Termination of the given ITRSProblem could not be shown:



ITRS
  ↳ ITRStoQTRSProof

ITRS problem:
The following domains are used:

z

The TRS R consists of the following rules:

cond1(FALSE, x) → x
cond2(FALSE, x) → f(+@z(*@z(3@z, x), 1@z))
f(x) → cond1(>@z(x, 1@z), x)
cond2(TRUE, x) → f(/@z(x, 2@z))
cond1(TRUE, x) → cond2(=@z(%@z(x, 2@z), 0@z), x)

The set Q consists of the following terms:

cond1(FALSE, x0)
cond2(FALSE, x0)
f(x0)
cond2(TRUE, x0)
cond1(TRUE, x0)


Represented integers and predefined function symbols by Terms

↳ ITRS
  ↳ ITRStoQTRSProof
QTRS
      ↳ DependencyPairsProof

Q restricted rewrite system:
The TRS R consists of the following rules:

cond1(false, x) → x
cond2(false, x) → f(plus_int(pos(s(0)), mult_int(pos(s(s(s(0)))), x)))
f(x) → cond1(greater_int(x, pos(s(0))), x)
cond2(true, x) → f(div_int(x, pos(s(s(0)))))
cond1(true, x) → cond2(equal_int(mod_int(x, pos(s(s(0)))), pos(0)), x)
plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(neg(x), pos(y)) → minus_nat(y, x)
plus_int(neg(x), neg(y)) → neg(plus_nat(x, y))
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
mult_int(pos(x), pos(y)) → pos(mult_nat(x, y))
mult_int(pos(x), neg(y)) → neg(mult_nat(x, y))
mult_int(neg(x), pos(y)) → neg(mult_nat(x, y))
mult_int(neg(x), neg(y)) → pos(mult_nat(x, y))
mult_nat(0, y) → 0
mult_nat(s(x), 0) → 0
mult_nat(s(x), s(y)) → plus_nat(mult_nat(x, s(y)), s(y))
greater_int(pos(0), pos(0)) → false
greater_int(pos(0), neg(0)) → false
greater_int(neg(0), pos(0)) → false
greater_int(neg(0), neg(0)) → false
greater_int(pos(0), pos(s(y))) → false
greater_int(neg(0), pos(s(y))) → false
greater_int(pos(0), neg(s(y))) → true
greater_int(neg(0), neg(s(y))) → true
greater_int(pos(s(x)), pos(0)) → true
greater_int(neg(s(x)), pos(0)) → false
greater_int(pos(s(x)), neg(0)) → true
greater_int(neg(s(x)), neg(0)) → false
greater_int(pos(s(x)), neg(s(y))) → true
greater_int(neg(s(x)), pos(s(y))) → false
greater_int(pos(s(x)), pos(s(y))) → greater_int(pos(x), pos(y))
greater_int(neg(s(x)), neg(s(y))) → greater_int(neg(x), neg(y))
div_int(pos(x), pos(s(y))) → pos(div_nat(x, s(y)))
div_int(pos(x), neg(s(y))) → neg(div_nat(x, s(y)))
div_int(neg(x), pos(s(y))) → neg(div_nat(x, s(y)))
div_int(neg(x), neg(s(y))) → pos(div_nat(x, s(y)))
div_nat(0, s(y)) → 0
div_nat(s(x), s(y)) → if(greatereq_int(pos(x), pos(y)), div_nat(minus_nat_s(x, y), s(y)), 0)
greatereq_int(pos(x), pos(0)) → true
greatereq_int(neg(0), pos(0)) → true
greatereq_int(neg(0), neg(y)) → true
greatereq_int(pos(x), neg(y)) → true
greatereq_int(pos(0), pos(s(y))) → false
greatereq_int(neg(x), pos(s(y))) → false
greatereq_int(neg(s(x)), pos(0)) → false
greatereq_int(neg(s(x)), neg(0)) → false
greatereq_int(pos(s(x)), pos(s(y))) → greatereq_int(pos(x), pos(y))
greatereq_int(neg(s(x)), neg(s(y))) → greatereq_int(neg(x), neg(y))
if(true, x, y) → x
if(false, x, y) → y
minus_nat_s(x, 0) → x
minus_nat_s(0, s(y)) → 0
minus_nat_s(s(x), s(y)) → minus_nat_s(x, y)
equal_int(pos(0), pos(0)) → true
equal_int(neg(0), pos(0)) → true
equal_int(neg(0), neg(0)) → true
equal_int(pos(0), neg(0)) → true
equal_int(pos(0), pos(s(y))) → false
equal_int(neg(0), pos(s(y))) → false
equal_int(pos(0), neg(s(y))) → false
equal_int(neg(0), neg(s(y))) → false
equal_int(pos(s(x)), pos(0)) → false
equal_int(pos(s(x)), neg(0)) → false
equal_int(neg(s(x)), pos(0)) → false
equal_int(neg(s(x)), neg(0)) → false
equal_int(pos(s(x)), neg(s(y))) → false
equal_int(neg(s(x)), pos(s(y))) → false
equal_int(pos(s(x)), pos(s(y))) → equal_int(pos(x), pos(y))
equal_int(neg(s(x)), neg(s(y))) → equal_int(neg(x), neg(y))
mod_int(pos(x), pos(y)) → pos(mod_nat(x, y))
mod_int(pos(x), neg(y)) → pos(mod_nat(x, y))
mod_int(neg(x), pos(y)) → neg(mod_nat(x, y))
mod_int(neg(x), neg(y)) → neg(mod_nat(x, y))
mod_nat(0, s(x)) → 0
mod_nat(s(x), s(y)) → if(greatereq_int(pos(x), pos(y)), mod_nat(minus_nat_s(x, y), s(y)), s(x))

The set Q consists of the following terms:

cond1(false, x0)
cond2(false, x0)
f(x0)
cond2(true, x0)
cond1(true, x0)
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
mult_int(pos(x0), pos(x1))
mult_int(pos(x0), neg(x1))
mult_int(neg(x0), pos(x1))
mult_int(neg(x0), neg(x1))
mult_nat(0, x0)
mult_nat(s(x0), 0)
mult_nat(s(x0), s(x1))
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
div_int(pos(x0), pos(s(x1)))
div_int(pos(x0), neg(s(x1)))
div_int(neg(x0), pos(s(x1)))
div_int(neg(x0), neg(s(x1)))
div_nat(0, s(x0))
div_nat(s(x0), s(x1))
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
if(true, x0, x1)
if(false, x0, x1)
minus_nat_s(x0, 0)
minus_nat_s(0, s(x0))
minus_nat_s(s(x0), s(x1))
equal_int(pos(0), pos(0))
equal_int(neg(0), pos(0))
equal_int(neg(0), neg(0))
equal_int(pos(0), neg(0))
equal_int(pos(0), pos(s(x0)))
equal_int(neg(0), pos(s(x0)))
equal_int(pos(0), neg(s(x0)))
equal_int(neg(0), neg(s(x0)))
equal_int(pos(s(x0)), pos(0))
equal_int(pos(s(x0)), neg(0))
equal_int(neg(s(x0)), pos(0))
equal_int(neg(s(x0)), neg(0))
equal_int(pos(s(x0)), neg(s(x1)))
equal_int(neg(s(x0)), pos(s(x1)))
equal_int(pos(s(x0)), pos(s(x1)))
equal_int(neg(s(x0)), neg(s(x1)))
mod_int(pos(x0), pos(x1))
mod_int(pos(x0), neg(x1))
mod_int(neg(x0), pos(x1))
mod_int(neg(x0), neg(x1))
mod_nat(0, s(x0))
mod_nat(s(x0), s(x1))


Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:

COND2(false, x) → F(plus_int(pos(s(0)), mult_int(pos(s(s(s(0)))), x)))
COND2(false, x) → PLUS_INT(pos(s(0)), mult_int(pos(s(s(s(0)))), x))
COND2(false, x) → MULT_INT(pos(s(s(s(0)))), x)
F(x) → COND1(greater_int(x, pos(s(0))), x)
F(x) → GREATER_INT(x, pos(s(0)))
COND2(true, x) → F(div_int(x, pos(s(s(0)))))
COND2(true, x) → DIV_INT(x, pos(s(s(0))))
COND1(true, x) → COND2(equal_int(mod_int(x, pos(s(s(0)))), pos(0)), x)
COND1(true, x) → EQUAL_INT(mod_int(x, pos(s(s(0)))), pos(0))
COND1(true, x) → MOD_INT(x, pos(s(s(0))))
PLUS_INT(pos(x), neg(y)) → MINUS_NAT(x, y)
PLUS_INT(neg(x), pos(y)) → MINUS_NAT(y, x)
PLUS_INT(neg(x), neg(y)) → PLUS_NAT(x, y)
PLUS_INT(pos(x), pos(y)) → PLUS_NAT(x, y)
PLUS_NAT(s(x), y) → PLUS_NAT(x, y)
MINUS_NAT(s(x), s(y)) → MINUS_NAT(x, y)
MULT_INT(pos(x), pos(y)) → MULT_NAT(x, y)
MULT_INT(pos(x), neg(y)) → MULT_NAT(x, y)
MULT_INT(neg(x), pos(y)) → MULT_NAT(x, y)
MULT_INT(neg(x), neg(y)) → MULT_NAT(x, y)
MULT_NAT(s(x), s(y)) → PLUS_NAT(mult_nat(x, s(y)), s(y))
MULT_NAT(s(x), s(y)) → MULT_NAT(x, s(y))
GREATER_INT(pos(s(x)), pos(s(y))) → GREATER_INT(pos(x), pos(y))
GREATER_INT(neg(s(x)), neg(s(y))) → GREATER_INT(neg(x), neg(y))
DIV_INT(pos(x), pos(s(y))) → DIV_NAT(x, s(y))
DIV_INT(pos(x), neg(s(y))) → DIV_NAT(x, s(y))
DIV_INT(neg(x), pos(s(y))) → DIV_NAT(x, s(y))
DIV_INT(neg(x), neg(s(y))) → DIV_NAT(x, s(y))
DIV_NAT(s(x), s(y)) → IF(greatereq_int(pos(x), pos(y)), div_nat(minus_nat_s(x, y), s(y)), 0)
DIV_NAT(s(x), s(y)) → GREATEREQ_INT(pos(x), pos(y))
DIV_NAT(s(x), s(y)) → DIV_NAT(minus_nat_s(x, y), s(y))
DIV_NAT(s(x), s(y)) → MINUS_NAT_S(x, y)
GREATEREQ_INT(pos(s(x)), pos(s(y))) → GREATEREQ_INT(pos(x), pos(y))
GREATEREQ_INT(neg(s(x)), neg(s(y))) → GREATEREQ_INT(neg(x), neg(y))
MINUS_NAT_S(s(x), s(y)) → MINUS_NAT_S(x, y)
EQUAL_INT(pos(s(x)), pos(s(y))) → EQUAL_INT(pos(x), pos(y))
EQUAL_INT(neg(s(x)), neg(s(y))) → EQUAL_INT(neg(x), neg(y))
MOD_INT(pos(x), pos(y)) → MOD_NAT(x, y)
MOD_INT(pos(x), neg(y)) → MOD_NAT(x, y)
MOD_INT(neg(x), pos(y)) → MOD_NAT(x, y)
MOD_INT(neg(x), neg(y)) → MOD_NAT(x, y)
MOD_NAT(s(x), s(y)) → IF(greatereq_int(pos(x), pos(y)), mod_nat(minus_nat_s(x, y), s(y)), s(x))
MOD_NAT(s(x), s(y)) → GREATEREQ_INT(pos(x), pos(y))
MOD_NAT(s(x), s(y)) → MOD_NAT(minus_nat_s(x, y), s(y))
MOD_NAT(s(x), s(y)) → MINUS_NAT_S(x, y)

The TRS R consists of the following rules:

cond1(false, x) → x
cond2(false, x) → f(plus_int(pos(s(0)), mult_int(pos(s(s(s(0)))), x)))
f(x) → cond1(greater_int(x, pos(s(0))), x)
cond2(true, x) → f(div_int(x, pos(s(s(0)))))
cond1(true, x) → cond2(equal_int(mod_int(x, pos(s(s(0)))), pos(0)), x)
plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(neg(x), pos(y)) → minus_nat(y, x)
plus_int(neg(x), neg(y)) → neg(plus_nat(x, y))
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
mult_int(pos(x), pos(y)) → pos(mult_nat(x, y))
mult_int(pos(x), neg(y)) → neg(mult_nat(x, y))
mult_int(neg(x), pos(y)) → neg(mult_nat(x, y))
mult_int(neg(x), neg(y)) → pos(mult_nat(x, y))
mult_nat(0, y) → 0
mult_nat(s(x), 0) → 0
mult_nat(s(x), s(y)) → plus_nat(mult_nat(x, s(y)), s(y))
greater_int(pos(0), pos(0)) → false
greater_int(pos(0), neg(0)) → false
greater_int(neg(0), pos(0)) → false
greater_int(neg(0), neg(0)) → false
greater_int(pos(0), pos(s(y))) → false
greater_int(neg(0), pos(s(y))) → false
greater_int(pos(0), neg(s(y))) → true
greater_int(neg(0), neg(s(y))) → true
greater_int(pos(s(x)), pos(0)) → true
greater_int(neg(s(x)), pos(0)) → false
greater_int(pos(s(x)), neg(0)) → true
greater_int(neg(s(x)), neg(0)) → false
greater_int(pos(s(x)), neg(s(y))) → true
greater_int(neg(s(x)), pos(s(y))) → false
greater_int(pos(s(x)), pos(s(y))) → greater_int(pos(x), pos(y))
greater_int(neg(s(x)), neg(s(y))) → greater_int(neg(x), neg(y))
div_int(pos(x), pos(s(y))) → pos(div_nat(x, s(y)))
div_int(pos(x), neg(s(y))) → neg(div_nat(x, s(y)))
div_int(neg(x), pos(s(y))) → neg(div_nat(x, s(y)))
div_int(neg(x), neg(s(y))) → pos(div_nat(x, s(y)))
div_nat(0, s(y)) → 0
div_nat(s(x), s(y)) → if(greatereq_int(pos(x), pos(y)), div_nat(minus_nat_s(x, y), s(y)), 0)
greatereq_int(pos(x), pos(0)) → true
greatereq_int(neg(0), pos(0)) → true
greatereq_int(neg(0), neg(y)) → true
greatereq_int(pos(x), neg(y)) → true
greatereq_int(pos(0), pos(s(y))) → false
greatereq_int(neg(x), pos(s(y))) → false
greatereq_int(neg(s(x)), pos(0)) → false
greatereq_int(neg(s(x)), neg(0)) → false
greatereq_int(pos(s(x)), pos(s(y))) → greatereq_int(pos(x), pos(y))
greatereq_int(neg(s(x)), neg(s(y))) → greatereq_int(neg(x), neg(y))
if(true, x, y) → x
if(false, x, y) → y
minus_nat_s(x, 0) → x
minus_nat_s(0, s(y)) → 0
minus_nat_s(s(x), s(y)) → minus_nat_s(x, y)
equal_int(pos(0), pos(0)) → true
equal_int(neg(0), pos(0)) → true
equal_int(neg(0), neg(0)) → true
equal_int(pos(0), neg(0)) → true
equal_int(pos(0), pos(s(y))) → false
equal_int(neg(0), pos(s(y))) → false
equal_int(pos(0), neg(s(y))) → false
equal_int(neg(0), neg(s(y))) → false
equal_int(pos(s(x)), pos(0)) → false
equal_int(pos(s(x)), neg(0)) → false
equal_int(neg(s(x)), pos(0)) → false
equal_int(neg(s(x)), neg(0)) → false
equal_int(pos(s(x)), neg(s(y))) → false
equal_int(neg(s(x)), pos(s(y))) → false
equal_int(pos(s(x)), pos(s(y))) → equal_int(pos(x), pos(y))
equal_int(neg(s(x)), neg(s(y))) → equal_int(neg(x), neg(y))
mod_int(pos(x), pos(y)) → pos(mod_nat(x, y))
mod_int(pos(x), neg(y)) → pos(mod_nat(x, y))
mod_int(neg(x), pos(y)) → neg(mod_nat(x, y))
mod_int(neg(x), neg(y)) → neg(mod_nat(x, y))
mod_nat(0, s(x)) → 0
mod_nat(s(x), s(y)) → if(greatereq_int(pos(x), pos(y)), mod_nat(minus_nat_s(x, y), s(y)), s(x))

The set Q consists of the following terms:

cond1(false, x0)
cond2(false, x0)
f(x0)
cond2(true, x0)
cond1(true, x0)
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
mult_int(pos(x0), pos(x1))
mult_int(pos(x0), neg(x1))
mult_int(neg(x0), pos(x1))
mult_int(neg(x0), neg(x1))
mult_nat(0, x0)
mult_nat(s(x0), 0)
mult_nat(s(x0), s(x1))
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
div_int(pos(x0), pos(s(x1)))
div_int(pos(x0), neg(s(x1)))
div_int(neg(x0), pos(s(x1)))
div_int(neg(x0), neg(s(x1)))
div_nat(0, s(x0))
div_nat(s(x0), s(x1))
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
if(true, x0, x1)
if(false, x0, x1)
minus_nat_s(x0, 0)
minus_nat_s(0, s(x0))
minus_nat_s(s(x0), s(x1))
equal_int(pos(0), pos(0))
equal_int(neg(0), pos(0))
equal_int(neg(0), neg(0))
equal_int(pos(0), neg(0))
equal_int(pos(0), pos(s(x0)))
equal_int(neg(0), pos(s(x0)))
equal_int(pos(0), neg(s(x0)))
equal_int(neg(0), neg(s(x0)))
equal_int(pos(s(x0)), pos(0))
equal_int(pos(s(x0)), neg(0))
equal_int(neg(s(x0)), pos(0))
equal_int(neg(s(x0)), neg(0))
equal_int(pos(s(x0)), neg(s(x1)))
equal_int(neg(s(x0)), pos(s(x1)))
equal_int(pos(s(x0)), pos(s(x1)))
equal_int(neg(s(x0)), neg(s(x1)))
mod_int(pos(x0), pos(x1))
mod_int(pos(x0), neg(x1))
mod_int(neg(x0), pos(x1))
mod_int(neg(x0), neg(x1))
mod_nat(0, s(x0))
mod_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.

↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
QDP
          ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

COND2(false, x) → F(plus_int(pos(s(0)), mult_int(pos(s(s(s(0)))), x)))
COND2(false, x) → PLUS_INT(pos(s(0)), mult_int(pos(s(s(s(0)))), x))
COND2(false, x) → MULT_INT(pos(s(s(s(0)))), x)
F(x) → COND1(greater_int(x, pos(s(0))), x)
F(x) → GREATER_INT(x, pos(s(0)))
COND2(true, x) → F(div_int(x, pos(s(s(0)))))
COND2(true, x) → DIV_INT(x, pos(s(s(0))))
COND1(true, x) → COND2(equal_int(mod_int(x, pos(s(s(0)))), pos(0)), x)
COND1(true, x) → EQUAL_INT(mod_int(x, pos(s(s(0)))), pos(0))
COND1(true, x) → MOD_INT(x, pos(s(s(0))))
PLUS_INT(pos(x), neg(y)) → MINUS_NAT(x, y)
PLUS_INT(neg(x), pos(y)) → MINUS_NAT(y, x)
PLUS_INT(neg(x), neg(y)) → PLUS_NAT(x, y)
PLUS_INT(pos(x), pos(y)) → PLUS_NAT(x, y)
PLUS_NAT(s(x), y) → PLUS_NAT(x, y)
MINUS_NAT(s(x), s(y)) → MINUS_NAT(x, y)
MULT_INT(pos(x), pos(y)) → MULT_NAT(x, y)
MULT_INT(pos(x), neg(y)) → MULT_NAT(x, y)
MULT_INT(neg(x), pos(y)) → MULT_NAT(x, y)
MULT_INT(neg(x), neg(y)) → MULT_NAT(x, y)
MULT_NAT(s(x), s(y)) → PLUS_NAT(mult_nat(x, s(y)), s(y))
MULT_NAT(s(x), s(y)) → MULT_NAT(x, s(y))
GREATER_INT(pos(s(x)), pos(s(y))) → GREATER_INT(pos(x), pos(y))
GREATER_INT(neg(s(x)), neg(s(y))) → GREATER_INT(neg(x), neg(y))
DIV_INT(pos(x), pos(s(y))) → DIV_NAT(x, s(y))
DIV_INT(pos(x), neg(s(y))) → DIV_NAT(x, s(y))
DIV_INT(neg(x), pos(s(y))) → DIV_NAT(x, s(y))
DIV_INT(neg(x), neg(s(y))) → DIV_NAT(x, s(y))
DIV_NAT(s(x), s(y)) → IF(greatereq_int(pos(x), pos(y)), div_nat(minus_nat_s(x, y), s(y)), 0)
DIV_NAT(s(x), s(y)) → GREATEREQ_INT(pos(x), pos(y))
DIV_NAT(s(x), s(y)) → DIV_NAT(minus_nat_s(x, y), s(y))
DIV_NAT(s(x), s(y)) → MINUS_NAT_S(x, y)
GREATEREQ_INT(pos(s(x)), pos(s(y))) → GREATEREQ_INT(pos(x), pos(y))
GREATEREQ_INT(neg(s(x)), neg(s(y))) → GREATEREQ_INT(neg(x), neg(y))
MINUS_NAT_S(s(x), s(y)) → MINUS_NAT_S(x, y)
EQUAL_INT(pos(s(x)), pos(s(y))) → EQUAL_INT(pos(x), pos(y))
EQUAL_INT(neg(s(x)), neg(s(y))) → EQUAL_INT(neg(x), neg(y))
MOD_INT(pos(x), pos(y)) → MOD_NAT(x, y)
MOD_INT(pos(x), neg(y)) → MOD_NAT(x, y)
MOD_INT(neg(x), pos(y)) → MOD_NAT(x, y)
MOD_INT(neg(x), neg(y)) → MOD_NAT(x, y)
MOD_NAT(s(x), s(y)) → IF(greatereq_int(pos(x), pos(y)), mod_nat(minus_nat_s(x, y), s(y)), s(x))
MOD_NAT(s(x), s(y)) → GREATEREQ_INT(pos(x), pos(y))
MOD_NAT(s(x), s(y)) → MOD_NAT(minus_nat_s(x, y), s(y))
MOD_NAT(s(x), s(y)) → MINUS_NAT_S(x, y)

The TRS R consists of the following rules:

cond1(false, x) → x
cond2(false, x) → f(plus_int(pos(s(0)), mult_int(pos(s(s(s(0)))), x)))
f(x) → cond1(greater_int(x, pos(s(0))), x)
cond2(true, x) → f(div_int(x, pos(s(s(0)))))
cond1(true, x) → cond2(equal_int(mod_int(x, pos(s(s(0)))), pos(0)), x)
plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(neg(x), pos(y)) → minus_nat(y, x)
plus_int(neg(x), neg(y)) → neg(plus_nat(x, y))
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
mult_int(pos(x), pos(y)) → pos(mult_nat(x, y))
mult_int(pos(x), neg(y)) → neg(mult_nat(x, y))
mult_int(neg(x), pos(y)) → neg(mult_nat(x, y))
mult_int(neg(x), neg(y)) → pos(mult_nat(x, y))
mult_nat(0, y) → 0
mult_nat(s(x), 0) → 0
mult_nat(s(x), s(y)) → plus_nat(mult_nat(x, s(y)), s(y))
greater_int(pos(0), pos(0)) → false
greater_int(pos(0), neg(0)) → false
greater_int(neg(0), pos(0)) → false
greater_int(neg(0), neg(0)) → false
greater_int(pos(0), pos(s(y))) → false
greater_int(neg(0), pos(s(y))) → false
greater_int(pos(0), neg(s(y))) → true
greater_int(neg(0), neg(s(y))) → true
greater_int(pos(s(x)), pos(0)) → true
greater_int(neg(s(x)), pos(0)) → false
greater_int(pos(s(x)), neg(0)) → true
greater_int(neg(s(x)), neg(0)) → false
greater_int(pos(s(x)), neg(s(y))) → true
greater_int(neg(s(x)), pos(s(y))) → false
greater_int(pos(s(x)), pos(s(y))) → greater_int(pos(x), pos(y))
greater_int(neg(s(x)), neg(s(y))) → greater_int(neg(x), neg(y))
div_int(pos(x), pos(s(y))) → pos(div_nat(x, s(y)))
div_int(pos(x), neg(s(y))) → neg(div_nat(x, s(y)))
div_int(neg(x), pos(s(y))) → neg(div_nat(x, s(y)))
div_int(neg(x), neg(s(y))) → pos(div_nat(x, s(y)))
div_nat(0, s(y)) → 0
div_nat(s(x), s(y)) → if(greatereq_int(pos(x), pos(y)), div_nat(minus_nat_s(x, y), s(y)), 0)
greatereq_int(pos(x), pos(0)) → true
greatereq_int(neg(0), pos(0)) → true
greatereq_int(neg(0), neg(y)) → true
greatereq_int(pos(x), neg(y)) → true
greatereq_int(pos(0), pos(s(y))) → false
greatereq_int(neg(x), pos(s(y))) → false
greatereq_int(neg(s(x)), pos(0)) → false
greatereq_int(neg(s(x)), neg(0)) → false
greatereq_int(pos(s(x)), pos(s(y))) → greatereq_int(pos(x), pos(y))
greatereq_int(neg(s(x)), neg(s(y))) → greatereq_int(neg(x), neg(y))
if(true, x, y) → x
if(false, x, y) → y
minus_nat_s(x, 0) → x
minus_nat_s(0, s(y)) → 0
minus_nat_s(s(x), s(y)) → minus_nat_s(x, y)
equal_int(pos(0), pos(0)) → true
equal_int(neg(0), pos(0)) → true
equal_int(neg(0), neg(0)) → true
equal_int(pos(0), neg(0)) → true
equal_int(pos(0), pos(s(y))) → false
equal_int(neg(0), pos(s(y))) → false
equal_int(pos(0), neg(s(y))) → false
equal_int(neg(0), neg(s(y))) → false
equal_int(pos(s(x)), pos(0)) → false
equal_int(pos(s(x)), neg(0)) → false
equal_int(neg(s(x)), pos(0)) → false
equal_int(neg(s(x)), neg(0)) → false
equal_int(pos(s(x)), neg(s(y))) → false
equal_int(neg(s(x)), pos(s(y))) → false
equal_int(pos(s(x)), pos(s(y))) → equal_int(pos(x), pos(y))
equal_int(neg(s(x)), neg(s(y))) → equal_int(neg(x), neg(y))
mod_int(pos(x), pos(y)) → pos(mod_nat(x, y))
mod_int(pos(x), neg(y)) → pos(mod_nat(x, y))
mod_int(neg(x), pos(y)) → neg(mod_nat(x, y))
mod_int(neg(x), neg(y)) → neg(mod_nat(x, y))
mod_nat(0, s(x)) → 0
mod_nat(s(x), s(y)) → if(greatereq_int(pos(x), pos(y)), mod_nat(minus_nat_s(x, y), s(y)), s(x))

The set Q consists of the following terms:

cond1(false, x0)
cond2(false, x0)
f(x0)
cond2(true, x0)
cond1(true, x0)
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
mult_int(pos(x0), pos(x1))
mult_int(pos(x0), neg(x1))
mult_int(neg(x0), pos(x1))
mult_int(neg(x0), neg(x1))
mult_nat(0, x0)
mult_nat(s(x0), 0)
mult_nat(s(x0), s(x1))
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
div_int(pos(x0), pos(s(x1)))
div_int(pos(x0), neg(s(x1)))
div_int(neg(x0), pos(s(x1)))
div_int(neg(x0), neg(s(x1)))
div_nat(0, s(x0))
div_nat(s(x0), s(x1))
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
if(true, x0, x1)
if(false, x0, x1)
minus_nat_s(x0, 0)
minus_nat_s(0, s(x0))
minus_nat_s(s(x0), s(x1))
equal_int(pos(0), pos(0))
equal_int(neg(0), pos(0))
equal_int(neg(0), neg(0))
equal_int(pos(0), neg(0))
equal_int(pos(0), pos(s(x0)))
equal_int(neg(0), pos(s(x0)))
equal_int(pos(0), neg(s(x0)))
equal_int(neg(0), neg(s(x0)))
equal_int(pos(s(x0)), pos(0))
equal_int(pos(s(x0)), neg(0))
equal_int(neg(s(x0)), pos(0))
equal_int(neg(s(x0)), neg(0))
equal_int(pos(s(x0)), neg(s(x1)))
equal_int(neg(s(x0)), pos(s(x1)))
equal_int(pos(s(x0)), pos(s(x1)))
equal_int(neg(s(x0)), neg(s(x1)))
mod_int(pos(x0), pos(x1))
mod_int(pos(x0), neg(x1))
mod_int(neg(x0), pos(x1))
mod_int(neg(x0), neg(x1))
mod_nat(0, s(x0))
mod_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 13 SCCs with 29 less nodes.

↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
QDP
                ↳ UsableRulesProof
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

EQUAL_INT(neg(s(x)), neg(s(y))) → EQUAL_INT(neg(x), neg(y))

The TRS R consists of the following rules:

cond1(false, x) → x
cond2(false, x) → f(plus_int(pos(s(0)), mult_int(pos(s(s(s(0)))), x)))
f(x) → cond1(greater_int(x, pos(s(0))), x)
cond2(true, x) → f(div_int(x, pos(s(s(0)))))
cond1(true, x) → cond2(equal_int(mod_int(x, pos(s(s(0)))), pos(0)), x)
plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(neg(x), pos(y)) → minus_nat(y, x)
plus_int(neg(x), neg(y)) → neg(plus_nat(x, y))
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
mult_int(pos(x), pos(y)) → pos(mult_nat(x, y))
mult_int(pos(x), neg(y)) → neg(mult_nat(x, y))
mult_int(neg(x), pos(y)) → neg(mult_nat(x, y))
mult_int(neg(x), neg(y)) → pos(mult_nat(x, y))
mult_nat(0, y) → 0
mult_nat(s(x), 0) → 0
mult_nat(s(x), s(y)) → plus_nat(mult_nat(x, s(y)), s(y))
greater_int(pos(0), pos(0)) → false
greater_int(pos(0), neg(0)) → false
greater_int(neg(0), pos(0)) → false
greater_int(neg(0), neg(0)) → false
greater_int(pos(0), pos(s(y))) → false
greater_int(neg(0), pos(s(y))) → false
greater_int(pos(0), neg(s(y))) → true
greater_int(neg(0), neg(s(y))) → true
greater_int(pos(s(x)), pos(0)) → true
greater_int(neg(s(x)), pos(0)) → false
greater_int(pos(s(x)), neg(0)) → true
greater_int(neg(s(x)), neg(0)) → false
greater_int(pos(s(x)), neg(s(y))) → true
greater_int(neg(s(x)), pos(s(y))) → false
greater_int(pos(s(x)), pos(s(y))) → greater_int(pos(x), pos(y))
greater_int(neg(s(x)), neg(s(y))) → greater_int(neg(x), neg(y))
div_int(pos(x), pos(s(y))) → pos(div_nat(x, s(y)))
div_int(pos(x), neg(s(y))) → neg(div_nat(x, s(y)))
div_int(neg(x), pos(s(y))) → neg(div_nat(x, s(y)))
div_int(neg(x), neg(s(y))) → pos(div_nat(x, s(y)))
div_nat(0, s(y)) → 0
div_nat(s(x), s(y)) → if(greatereq_int(pos(x), pos(y)), div_nat(minus_nat_s(x, y), s(y)), 0)
greatereq_int(pos(x), pos(0)) → true
greatereq_int(neg(0), pos(0)) → true
greatereq_int(neg(0), neg(y)) → true
greatereq_int(pos(x), neg(y)) → true
greatereq_int(pos(0), pos(s(y))) → false
greatereq_int(neg(x), pos(s(y))) → false
greatereq_int(neg(s(x)), pos(0)) → false
greatereq_int(neg(s(x)), neg(0)) → false
greatereq_int(pos(s(x)), pos(s(y))) → greatereq_int(pos(x), pos(y))
greatereq_int(neg(s(x)), neg(s(y))) → greatereq_int(neg(x), neg(y))
if(true, x, y) → x
if(false, x, y) → y
minus_nat_s(x, 0) → x
minus_nat_s(0, s(y)) → 0
minus_nat_s(s(x), s(y)) → minus_nat_s(x, y)
equal_int(pos(0), pos(0)) → true
equal_int(neg(0), pos(0)) → true
equal_int(neg(0), neg(0)) → true
equal_int(pos(0), neg(0)) → true
equal_int(pos(0), pos(s(y))) → false
equal_int(neg(0), pos(s(y))) → false
equal_int(pos(0), neg(s(y))) → false
equal_int(neg(0), neg(s(y))) → false
equal_int(pos(s(x)), pos(0)) → false
equal_int(pos(s(x)), neg(0)) → false
equal_int(neg(s(x)), pos(0)) → false
equal_int(neg(s(x)), neg(0)) → false
equal_int(pos(s(x)), neg(s(y))) → false
equal_int(neg(s(x)), pos(s(y))) → false
equal_int(pos(s(x)), pos(s(y))) → equal_int(pos(x), pos(y))
equal_int(neg(s(x)), neg(s(y))) → equal_int(neg(x), neg(y))
mod_int(pos(x), pos(y)) → pos(mod_nat(x, y))
mod_int(pos(x), neg(y)) → pos(mod_nat(x, y))
mod_int(neg(x), pos(y)) → neg(mod_nat(x, y))
mod_int(neg(x), neg(y)) → neg(mod_nat(x, y))
mod_nat(0, s(x)) → 0
mod_nat(s(x), s(y)) → if(greatereq_int(pos(x), pos(y)), mod_nat(minus_nat_s(x, y), s(y)), s(x))

The set Q consists of the following terms:

cond1(false, x0)
cond2(false, x0)
f(x0)
cond2(true, x0)
cond1(true, x0)
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
mult_int(pos(x0), pos(x1))
mult_int(pos(x0), neg(x1))
mult_int(neg(x0), pos(x1))
mult_int(neg(x0), neg(x1))
mult_nat(0, x0)
mult_nat(s(x0), 0)
mult_nat(s(x0), s(x1))
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
div_int(pos(x0), pos(s(x1)))
div_int(pos(x0), neg(s(x1)))
div_int(neg(x0), pos(s(x1)))
div_int(neg(x0), neg(s(x1)))
div_nat(0, s(x0))
div_nat(s(x0), s(x1))
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
if(true, x0, x1)
if(false, x0, x1)
minus_nat_s(x0, 0)
minus_nat_s(0, s(x0))
minus_nat_s(s(x0), s(x1))
equal_int(pos(0), pos(0))
equal_int(neg(0), pos(0))
equal_int(neg(0), neg(0))
equal_int(pos(0), neg(0))
equal_int(pos(0), pos(s(x0)))
equal_int(neg(0), pos(s(x0)))
equal_int(pos(0), neg(s(x0)))
equal_int(neg(0), neg(s(x0)))
equal_int(pos(s(x0)), pos(0))
equal_int(pos(s(x0)), neg(0))
equal_int(neg(s(x0)), pos(0))
equal_int(neg(s(x0)), neg(0))
equal_int(pos(s(x0)), neg(s(x1)))
equal_int(neg(s(x0)), pos(s(x1)))
equal_int(pos(s(x0)), pos(s(x1)))
equal_int(neg(s(x0)), neg(s(x1)))
mod_int(pos(x0), pos(x1))
mod_int(pos(x0), neg(x1))
mod_int(neg(x0), pos(x1))
mod_int(neg(x0), neg(x1))
mod_nat(0, s(x0))
mod_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.

↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
                ↳ UsableRulesProof
QDP
                    ↳ QReductionProof
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

EQUAL_INT(neg(s(x)), neg(s(y))) → EQUAL_INT(neg(x), neg(y))

R is empty.
The set Q consists of the following terms:

cond1(false, x0)
cond2(false, x0)
f(x0)
cond2(true, x0)
cond1(true, x0)
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
mult_int(pos(x0), pos(x1))
mult_int(pos(x0), neg(x1))
mult_int(neg(x0), pos(x1))
mult_int(neg(x0), neg(x1))
mult_nat(0, x0)
mult_nat(s(x0), 0)
mult_nat(s(x0), s(x1))
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
div_int(pos(x0), pos(s(x1)))
div_int(pos(x0), neg(s(x1)))
div_int(neg(x0), pos(s(x1)))
div_int(neg(x0), neg(s(x1)))
div_nat(0, s(x0))
div_nat(s(x0), s(x1))
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
if(true, x0, x1)
if(false, x0, x1)
minus_nat_s(x0, 0)
minus_nat_s(0, s(x0))
minus_nat_s(s(x0), s(x1))
equal_int(pos(0), pos(0))
equal_int(neg(0), pos(0))
equal_int(neg(0), neg(0))
equal_int(pos(0), neg(0))
equal_int(pos(0), pos(s(x0)))
equal_int(neg(0), pos(s(x0)))
equal_int(pos(0), neg(s(x0)))
equal_int(neg(0), neg(s(x0)))
equal_int(pos(s(x0)), pos(0))
equal_int(pos(s(x0)), neg(0))
equal_int(neg(s(x0)), pos(0))
equal_int(neg(s(x0)), neg(0))
equal_int(pos(s(x0)), neg(s(x1)))
equal_int(neg(s(x0)), pos(s(x1)))
equal_int(pos(s(x0)), pos(s(x1)))
equal_int(neg(s(x0)), neg(s(x1)))
mod_int(pos(x0), pos(x1))
mod_int(pos(x0), neg(x1))
mod_int(neg(x0), pos(x1))
mod_int(neg(x0), neg(x1))
mod_nat(0, s(x0))
mod_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].

cond1(false, x0)
cond2(false, x0)
f(x0)
cond2(true, x0)
cond1(true, x0)
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
mult_int(pos(x0), pos(x1))
mult_int(pos(x0), neg(x1))
mult_int(neg(x0), pos(x1))
mult_int(neg(x0), neg(x1))
mult_nat(0, x0)
mult_nat(s(x0), 0)
mult_nat(s(x0), s(x1))
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
div_int(pos(x0), pos(s(x1)))
div_int(pos(x0), neg(s(x1)))
div_int(neg(x0), pos(s(x1)))
div_int(neg(x0), neg(s(x1)))
div_nat(0, s(x0))
div_nat(s(x0), s(x1))
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
if(true, x0, x1)
if(false, x0, x1)
minus_nat_s(x0, 0)
minus_nat_s(0, s(x0))
minus_nat_s(s(x0), s(x1))
equal_int(pos(0), pos(0))
equal_int(neg(0), pos(0))
equal_int(neg(0), neg(0))
equal_int(pos(0), neg(0))
equal_int(pos(0), pos(s(x0)))
equal_int(neg(0), pos(s(x0)))
equal_int(pos(0), neg(s(x0)))
equal_int(neg(0), neg(s(x0)))
equal_int(pos(s(x0)), pos(0))
equal_int(pos(s(x0)), neg(0))
equal_int(neg(s(x0)), pos(0))
equal_int(neg(s(x0)), neg(0))
equal_int(pos(s(x0)), neg(s(x1)))
equal_int(neg(s(x0)), pos(s(x1)))
equal_int(pos(s(x0)), pos(s(x1)))
equal_int(neg(s(x0)), neg(s(x1)))
mod_int(pos(x0), pos(x1))
mod_int(pos(x0), neg(x1))
mod_int(neg(x0), pos(x1))
mod_int(neg(x0), neg(x1))
mod_nat(0, s(x0))
mod_nat(s(x0), s(x1))



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
QDP
                        ↳ UsableRulesReductionPairsProof
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

EQUAL_INT(neg(s(x)), neg(s(y))) → EQUAL_INT(neg(x), neg(y))

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the usable rules with reduction pair processor [LPAR04] with a polynomial ordering [POLO], all dependency pairs and the corresponding usable rules [FROCOS05] can be oriented non-strictly. All non-usable rules are removed, and those dependency pairs and usable rules that have been oriented strictly or contain non-usable symbols in their left-hand side are removed as well.

The following dependency pairs can be deleted:

EQUAL_INT(neg(s(x)), neg(s(y))) → EQUAL_INT(neg(x), neg(y))
No rules are removed from R.

Used ordering: POLO with Polynomial interpretation [POLO]:

POL(EQUAL_INT(x1, x2)) = 2·x1 + x2   
POL(neg(x1)) = x1   
POL(s(x1)) = 2·x1   



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ UsableRulesReductionPairsProof
QDP
                            ↳ PisEmptyProof
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
P is empty.
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
QDP
                ↳ UsableRulesProof
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

EQUAL_INT(pos(s(x)), pos(s(y))) → EQUAL_INT(pos(x), pos(y))

The TRS R consists of the following rules:

cond1(false, x) → x
cond2(false, x) → f(plus_int(pos(s(0)), mult_int(pos(s(s(s(0)))), x)))
f(x) → cond1(greater_int(x, pos(s(0))), x)
cond2(true, x) → f(div_int(x, pos(s(s(0)))))
cond1(true, x) → cond2(equal_int(mod_int(x, pos(s(s(0)))), pos(0)), x)
plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(neg(x), pos(y)) → minus_nat(y, x)
plus_int(neg(x), neg(y)) → neg(plus_nat(x, y))
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
mult_int(pos(x), pos(y)) → pos(mult_nat(x, y))
mult_int(pos(x), neg(y)) → neg(mult_nat(x, y))
mult_int(neg(x), pos(y)) → neg(mult_nat(x, y))
mult_int(neg(x), neg(y)) → pos(mult_nat(x, y))
mult_nat(0, y) → 0
mult_nat(s(x), 0) → 0
mult_nat(s(x), s(y)) → plus_nat(mult_nat(x, s(y)), s(y))
greater_int(pos(0), pos(0)) → false
greater_int(pos(0), neg(0)) → false
greater_int(neg(0), pos(0)) → false
greater_int(neg(0), neg(0)) → false
greater_int(pos(0), pos(s(y))) → false
greater_int(neg(0), pos(s(y))) → false
greater_int(pos(0), neg(s(y))) → true
greater_int(neg(0), neg(s(y))) → true
greater_int(pos(s(x)), pos(0)) → true
greater_int(neg(s(x)), pos(0)) → false
greater_int(pos(s(x)), neg(0)) → true
greater_int(neg(s(x)), neg(0)) → false
greater_int(pos(s(x)), neg(s(y))) → true
greater_int(neg(s(x)), pos(s(y))) → false
greater_int(pos(s(x)), pos(s(y))) → greater_int(pos(x), pos(y))
greater_int(neg(s(x)), neg(s(y))) → greater_int(neg(x), neg(y))
div_int(pos(x), pos(s(y))) → pos(div_nat(x, s(y)))
div_int(pos(x), neg(s(y))) → neg(div_nat(x, s(y)))
div_int(neg(x), pos(s(y))) → neg(div_nat(x, s(y)))
div_int(neg(x), neg(s(y))) → pos(div_nat(x, s(y)))
div_nat(0, s(y)) → 0
div_nat(s(x), s(y)) → if(greatereq_int(pos(x), pos(y)), div_nat(minus_nat_s(x, y), s(y)), 0)
greatereq_int(pos(x), pos(0)) → true
greatereq_int(neg(0), pos(0)) → true
greatereq_int(neg(0), neg(y)) → true
greatereq_int(pos(x), neg(y)) → true
greatereq_int(pos(0), pos(s(y))) → false
greatereq_int(neg(x), pos(s(y))) → false
greatereq_int(neg(s(x)), pos(0)) → false
greatereq_int(neg(s(x)), neg(0)) → false
greatereq_int(pos(s(x)), pos(s(y))) → greatereq_int(pos(x), pos(y))
greatereq_int(neg(s(x)), neg(s(y))) → greatereq_int(neg(x), neg(y))
if(true, x, y) → x
if(false, x, y) → y
minus_nat_s(x, 0) → x
minus_nat_s(0, s(y)) → 0
minus_nat_s(s(x), s(y)) → minus_nat_s(x, y)
equal_int(pos(0), pos(0)) → true
equal_int(neg(0), pos(0)) → true
equal_int(neg(0), neg(0)) → true
equal_int(pos(0), neg(0)) → true
equal_int(pos(0), pos(s(y))) → false
equal_int(neg(0), pos(s(y))) → false
equal_int(pos(0), neg(s(y))) → false
equal_int(neg(0), neg(s(y))) → false
equal_int(pos(s(x)), pos(0)) → false
equal_int(pos(s(x)), neg(0)) → false
equal_int(neg(s(x)), pos(0)) → false
equal_int(neg(s(x)), neg(0)) → false
equal_int(pos(s(x)), neg(s(y))) → false
equal_int(neg(s(x)), pos(s(y))) → false
equal_int(pos(s(x)), pos(s(y))) → equal_int(pos(x), pos(y))
equal_int(neg(s(x)), neg(s(y))) → equal_int(neg(x), neg(y))
mod_int(pos(x), pos(y)) → pos(mod_nat(x, y))
mod_int(pos(x), neg(y)) → pos(mod_nat(x, y))
mod_int(neg(x), pos(y)) → neg(mod_nat(x, y))
mod_int(neg(x), neg(y)) → neg(mod_nat(x, y))
mod_nat(0, s(x)) → 0
mod_nat(s(x), s(y)) → if(greatereq_int(pos(x), pos(y)), mod_nat(minus_nat_s(x, y), s(y)), s(x))

The set Q consists of the following terms:

cond1(false, x0)
cond2(false, x0)
f(x0)
cond2(true, x0)
cond1(true, x0)
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
mult_int(pos(x0), pos(x1))
mult_int(pos(x0), neg(x1))
mult_int(neg(x0), pos(x1))
mult_int(neg(x0), neg(x1))
mult_nat(0, x0)
mult_nat(s(x0), 0)
mult_nat(s(x0), s(x1))
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
div_int(pos(x0), pos(s(x1)))
div_int(pos(x0), neg(s(x1)))
div_int(neg(x0), pos(s(x1)))
div_int(neg(x0), neg(s(x1)))
div_nat(0, s(x0))
div_nat(s(x0), s(x1))
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
if(true, x0, x1)
if(false, x0, x1)
minus_nat_s(x0, 0)
minus_nat_s(0, s(x0))
minus_nat_s(s(x0), s(x1))
equal_int(pos(0), pos(0))
equal_int(neg(0), pos(0))
equal_int(neg(0), neg(0))
equal_int(pos(0), neg(0))
equal_int(pos(0), pos(s(x0)))
equal_int(neg(0), pos(s(x0)))
equal_int(pos(0), neg(s(x0)))
equal_int(neg(0), neg(s(x0)))
equal_int(pos(s(x0)), pos(0))
equal_int(pos(s(x0)), neg(0))
equal_int(neg(s(x0)), pos(0))
equal_int(neg(s(x0)), neg(0))
equal_int(pos(s(x0)), neg(s(x1)))
equal_int(neg(s(x0)), pos(s(x1)))
equal_int(pos(s(x0)), pos(s(x1)))
equal_int(neg(s(x0)), neg(s(x1)))
mod_int(pos(x0), pos(x1))
mod_int(pos(x0), neg(x1))
mod_int(neg(x0), pos(x1))
mod_int(neg(x0), neg(x1))
mod_nat(0, s(x0))
mod_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.

↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
QDP
                    ↳ QReductionProof
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

EQUAL_INT(pos(s(x)), pos(s(y))) → EQUAL_INT(pos(x), pos(y))

R is empty.
The set Q consists of the following terms:

cond1(false, x0)
cond2(false, x0)
f(x0)
cond2(true, x0)
cond1(true, x0)
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
mult_int(pos(x0), pos(x1))
mult_int(pos(x0), neg(x1))
mult_int(neg(x0), pos(x1))
mult_int(neg(x0), neg(x1))
mult_nat(0, x0)
mult_nat(s(x0), 0)
mult_nat(s(x0), s(x1))
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
div_int(pos(x0), pos(s(x1)))
div_int(pos(x0), neg(s(x1)))
div_int(neg(x0), pos(s(x1)))
div_int(neg(x0), neg(s(x1)))
div_nat(0, s(x0))
div_nat(s(x0), s(x1))
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
if(true, x0, x1)
if(false, x0, x1)
minus_nat_s(x0, 0)
minus_nat_s(0, s(x0))
minus_nat_s(s(x0), s(x1))
equal_int(pos(0), pos(0))
equal_int(neg(0), pos(0))
equal_int(neg(0), neg(0))
equal_int(pos(0), neg(0))
equal_int(pos(0), pos(s(x0)))
equal_int(neg(0), pos(s(x0)))
equal_int(pos(0), neg(s(x0)))
equal_int(neg(0), neg(s(x0)))
equal_int(pos(s(x0)), pos(0))
equal_int(pos(s(x0)), neg(0))
equal_int(neg(s(x0)), pos(0))
equal_int(neg(s(x0)), neg(0))
equal_int(pos(s(x0)), neg(s(x1)))
equal_int(neg(s(x0)), pos(s(x1)))
equal_int(pos(s(x0)), pos(s(x1)))
equal_int(neg(s(x0)), neg(s(x1)))
mod_int(pos(x0), pos(x1))
mod_int(pos(x0), neg(x1))
mod_int(neg(x0), pos(x1))
mod_int(neg(x0), neg(x1))
mod_nat(0, s(x0))
mod_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].

cond1(false, x0)
cond2(false, x0)
f(x0)
cond2(true, x0)
cond1(true, x0)
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
mult_int(pos(x0), pos(x1))
mult_int(pos(x0), neg(x1))
mult_int(neg(x0), pos(x1))
mult_int(neg(x0), neg(x1))
mult_nat(0, x0)
mult_nat(s(x0), 0)
mult_nat(s(x0), s(x1))
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
div_int(pos(x0), pos(s(x1)))
div_int(pos(x0), neg(s(x1)))
div_int(neg(x0), pos(s(x1)))
div_int(neg(x0), neg(s(x1)))
div_nat(0, s(x0))
div_nat(s(x0), s(x1))
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
if(true, x0, x1)
if(false, x0, x1)
minus_nat_s(x0, 0)
minus_nat_s(0, s(x0))
minus_nat_s(s(x0), s(x1))
equal_int(pos(0), pos(0))
equal_int(neg(0), pos(0))
equal_int(neg(0), neg(0))
equal_int(pos(0), neg(0))
equal_int(pos(0), pos(s(x0)))
equal_int(neg(0), pos(s(x0)))
equal_int(pos(0), neg(s(x0)))
equal_int(neg(0), neg(s(x0)))
equal_int(pos(s(x0)), pos(0))
equal_int(pos(s(x0)), neg(0))
equal_int(neg(s(x0)), pos(0))
equal_int(neg(s(x0)), neg(0))
equal_int(pos(s(x0)), neg(s(x1)))
equal_int(neg(s(x0)), pos(s(x1)))
equal_int(pos(s(x0)), pos(s(x1)))
equal_int(neg(s(x0)), neg(s(x1)))
mod_int(pos(x0), pos(x1))
mod_int(pos(x0), neg(x1))
mod_int(neg(x0), pos(x1))
mod_int(neg(x0), neg(x1))
mod_nat(0, s(x0))
mod_nat(s(x0), s(x1))



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
QDP
                        ↳ UsableRulesReductionPairsProof
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

EQUAL_INT(pos(s(x)), pos(s(y))) → EQUAL_INT(pos(x), pos(y))

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the usable rules with reduction pair processor [LPAR04] with a polynomial ordering [POLO], all dependency pairs and the corresponding usable rules [FROCOS05] can be oriented non-strictly. All non-usable rules are removed, and those dependency pairs and usable rules that have been oriented strictly or contain non-usable symbols in their left-hand side are removed as well.

The following dependency pairs can be deleted:

EQUAL_INT(pos(s(x)), pos(s(y))) → EQUAL_INT(pos(x), pos(y))
No rules are removed from R.

Used ordering: POLO with Polynomial interpretation [POLO]:

POL(EQUAL_INT(x1, x2)) = 2·x1 + x2   
POL(pos(x1)) = x1   
POL(s(x1)) = 2·x1   



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ UsableRulesReductionPairsProof
QDP
                            ↳ PisEmptyProof
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
P is empty.
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
QDP
                ↳ UsableRulesProof
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

MINUS_NAT_S(s(x), s(y)) → MINUS_NAT_S(x, y)

The TRS R consists of the following rules:

cond1(false, x) → x
cond2(false, x) → f(plus_int(pos(s(0)), mult_int(pos(s(s(s(0)))), x)))
f(x) → cond1(greater_int(x, pos(s(0))), x)
cond2(true, x) → f(div_int(x, pos(s(s(0)))))
cond1(true, x) → cond2(equal_int(mod_int(x, pos(s(s(0)))), pos(0)), x)
plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(neg(x), pos(y)) → minus_nat(y, x)
plus_int(neg(x), neg(y)) → neg(plus_nat(x, y))
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
mult_int(pos(x), pos(y)) → pos(mult_nat(x, y))
mult_int(pos(x), neg(y)) → neg(mult_nat(x, y))
mult_int(neg(x), pos(y)) → neg(mult_nat(x, y))
mult_int(neg(x), neg(y)) → pos(mult_nat(x, y))
mult_nat(0, y) → 0
mult_nat(s(x), 0) → 0
mult_nat(s(x), s(y)) → plus_nat(mult_nat(x, s(y)), s(y))
greater_int(pos(0), pos(0)) → false
greater_int(pos(0), neg(0)) → false
greater_int(neg(0), pos(0)) → false
greater_int(neg(0), neg(0)) → false
greater_int(pos(0), pos(s(y))) → false
greater_int(neg(0), pos(s(y))) → false
greater_int(pos(0), neg(s(y))) → true
greater_int(neg(0), neg(s(y))) → true
greater_int(pos(s(x)), pos(0)) → true
greater_int(neg(s(x)), pos(0)) → false
greater_int(pos(s(x)), neg(0)) → true
greater_int(neg(s(x)), neg(0)) → false
greater_int(pos(s(x)), neg(s(y))) → true
greater_int(neg(s(x)), pos(s(y))) → false
greater_int(pos(s(x)), pos(s(y))) → greater_int(pos(x), pos(y))
greater_int(neg(s(x)), neg(s(y))) → greater_int(neg(x), neg(y))
div_int(pos(x), pos(s(y))) → pos(div_nat(x, s(y)))
div_int(pos(x), neg(s(y))) → neg(div_nat(x, s(y)))
div_int(neg(x), pos(s(y))) → neg(div_nat(x, s(y)))
div_int(neg(x), neg(s(y))) → pos(div_nat(x, s(y)))
div_nat(0, s(y)) → 0
div_nat(s(x), s(y)) → if(greatereq_int(pos(x), pos(y)), div_nat(minus_nat_s(x, y), s(y)), 0)
greatereq_int(pos(x), pos(0)) → true
greatereq_int(neg(0), pos(0)) → true
greatereq_int(neg(0), neg(y)) → true
greatereq_int(pos(x), neg(y)) → true
greatereq_int(pos(0), pos(s(y))) → false
greatereq_int(neg(x), pos(s(y))) → false
greatereq_int(neg(s(x)), pos(0)) → false
greatereq_int(neg(s(x)), neg(0)) → false
greatereq_int(pos(s(x)), pos(s(y))) → greatereq_int(pos(x), pos(y))
greatereq_int(neg(s(x)), neg(s(y))) → greatereq_int(neg(x), neg(y))
if(true, x, y) → x
if(false, x, y) → y
minus_nat_s(x, 0) → x
minus_nat_s(0, s(y)) → 0
minus_nat_s(s(x), s(y)) → minus_nat_s(x, y)
equal_int(pos(0), pos(0)) → true
equal_int(neg(0), pos(0)) → true
equal_int(neg(0), neg(0)) → true
equal_int(pos(0), neg(0)) → true
equal_int(pos(0), pos(s(y))) → false
equal_int(neg(0), pos(s(y))) → false
equal_int(pos(0), neg(s(y))) → false
equal_int(neg(0), neg(s(y))) → false
equal_int(pos(s(x)), pos(0)) → false
equal_int(pos(s(x)), neg(0)) → false
equal_int(neg(s(x)), pos(0)) → false
equal_int(neg(s(x)), neg(0)) → false
equal_int(pos(s(x)), neg(s(y))) → false
equal_int(neg(s(x)), pos(s(y))) → false
equal_int(pos(s(x)), pos(s(y))) → equal_int(pos(x), pos(y))
equal_int(neg(s(x)), neg(s(y))) → equal_int(neg(x), neg(y))
mod_int(pos(x), pos(y)) → pos(mod_nat(x, y))
mod_int(pos(x), neg(y)) → pos(mod_nat(x, y))
mod_int(neg(x), pos(y)) → neg(mod_nat(x, y))
mod_int(neg(x), neg(y)) → neg(mod_nat(x, y))
mod_nat(0, s(x)) → 0
mod_nat(s(x), s(y)) → if(greatereq_int(pos(x), pos(y)), mod_nat(minus_nat_s(x, y), s(y)), s(x))

The set Q consists of the following terms:

cond1(false, x0)
cond2(false, x0)
f(x0)
cond2(true, x0)
cond1(true, x0)
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
mult_int(pos(x0), pos(x1))
mult_int(pos(x0), neg(x1))
mult_int(neg(x0), pos(x1))
mult_int(neg(x0), neg(x1))
mult_nat(0, x0)
mult_nat(s(x0), 0)
mult_nat(s(x0), s(x1))
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
div_int(pos(x0), pos(s(x1)))
div_int(pos(x0), neg(s(x1)))
div_int(neg(x0), pos(s(x1)))
div_int(neg(x0), neg(s(x1)))
div_nat(0, s(x0))
div_nat(s(x0), s(x1))
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
if(true, x0, x1)
if(false, x0, x1)
minus_nat_s(x0, 0)
minus_nat_s(0, s(x0))
minus_nat_s(s(x0), s(x1))
equal_int(pos(0), pos(0))
equal_int(neg(0), pos(0))
equal_int(neg(0), neg(0))
equal_int(pos(0), neg(0))
equal_int(pos(0), pos(s(x0)))
equal_int(neg(0), pos(s(x0)))
equal_int(pos(0), neg(s(x0)))
equal_int(neg(0), neg(s(x0)))
equal_int(pos(s(x0)), pos(0))
equal_int(pos(s(x0)), neg(0))
equal_int(neg(s(x0)), pos(0))
equal_int(neg(s(x0)), neg(0))
equal_int(pos(s(x0)), neg(s(x1)))
equal_int(neg(s(x0)), pos(s(x1)))
equal_int(pos(s(x0)), pos(s(x1)))
equal_int(neg(s(x0)), neg(s(x1)))
mod_int(pos(x0), pos(x1))
mod_int(pos(x0), neg(x1))
mod_int(neg(x0), pos(x1))
mod_int(neg(x0), neg(x1))
mod_nat(0, s(x0))
mod_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.

↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
QDP
                    ↳ QReductionProof
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

MINUS_NAT_S(s(x), s(y)) → MINUS_NAT_S(x, y)

R is empty.
The set Q consists of the following terms:

cond1(false, x0)
cond2(false, x0)
f(x0)
cond2(true, x0)
cond1(true, x0)
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
mult_int(pos(x0), pos(x1))
mult_int(pos(x0), neg(x1))
mult_int(neg(x0), pos(x1))
mult_int(neg(x0), neg(x1))
mult_nat(0, x0)
mult_nat(s(x0), 0)
mult_nat(s(x0), s(x1))
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
div_int(pos(x0), pos(s(x1)))
div_int(pos(x0), neg(s(x1)))
div_int(neg(x0), pos(s(x1)))
div_int(neg(x0), neg(s(x1)))
div_nat(0, s(x0))
div_nat(s(x0), s(x1))
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
if(true, x0, x1)
if(false, x0, x1)
minus_nat_s(x0, 0)
minus_nat_s(0, s(x0))
minus_nat_s(s(x0), s(x1))
equal_int(pos(0), pos(0))
equal_int(neg(0), pos(0))
equal_int(neg(0), neg(0))
equal_int(pos(0), neg(0))
equal_int(pos(0), pos(s(x0)))
equal_int(neg(0), pos(s(x0)))
equal_int(pos(0), neg(s(x0)))
equal_int(neg(0), neg(s(x0)))
equal_int(pos(s(x0)), pos(0))
equal_int(pos(s(x0)), neg(0))
equal_int(neg(s(x0)), pos(0))
equal_int(neg(s(x0)), neg(0))
equal_int(pos(s(x0)), neg(s(x1)))
equal_int(neg(s(x0)), pos(s(x1)))
equal_int(pos(s(x0)), pos(s(x1)))
equal_int(neg(s(x0)), neg(s(x1)))
mod_int(pos(x0), pos(x1))
mod_int(pos(x0), neg(x1))
mod_int(neg(x0), pos(x1))
mod_int(neg(x0), neg(x1))
mod_nat(0, s(x0))
mod_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].

cond1(false, x0)
cond2(false, x0)
f(x0)
cond2(true, x0)
cond1(true, x0)
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
mult_int(pos(x0), pos(x1))
mult_int(pos(x0), neg(x1))
mult_int(neg(x0), pos(x1))
mult_int(neg(x0), neg(x1))
mult_nat(0, x0)
mult_nat(s(x0), 0)
mult_nat(s(x0), s(x1))
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
div_int(pos(x0), pos(s(x1)))
div_int(pos(x0), neg(s(x1)))
div_int(neg(x0), pos(s(x1)))
div_int(neg(x0), neg(s(x1)))
div_nat(0, s(x0))
div_nat(s(x0), s(x1))
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
if(true, x0, x1)
if(false, x0, x1)
minus_nat_s(x0, 0)
minus_nat_s(0, s(x0))
minus_nat_s(s(x0), s(x1))
equal_int(pos(0), pos(0))
equal_int(neg(0), pos(0))
equal_int(neg(0), neg(0))
equal_int(pos(0), neg(0))
equal_int(pos(0), pos(s(x0)))
equal_int(neg(0), pos(s(x0)))
equal_int(pos(0), neg(s(x0)))
equal_int(neg(0), neg(s(x0)))
equal_int(pos(s(x0)), pos(0))
equal_int(pos(s(x0)), neg(0))
equal_int(neg(s(x0)), pos(0))
equal_int(neg(s(x0)), neg(0))
equal_int(pos(s(x0)), neg(s(x1)))
equal_int(neg(s(x0)), pos(s(x1)))
equal_int(pos(s(x0)), pos(s(x1)))
equal_int(neg(s(x0)), neg(s(x1)))
mod_int(pos(x0), pos(x1))
mod_int(pos(x0), neg(x1))
mod_int(neg(x0), pos(x1))
mod_int(neg(x0), neg(x1))
mod_nat(0, s(x0))
mod_nat(s(x0), s(x1))



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
QDP
                        ↳ QDPSizeChangeProof
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

MINUS_NAT_S(s(x), s(y)) → MINUS_NAT_S(x, y)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
QDP
                ↳ UsableRulesProof
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

GREATEREQ_INT(neg(s(x)), neg(s(y))) → GREATEREQ_INT(neg(x), neg(y))

The TRS R consists of the following rules:

cond1(false, x) → x
cond2(false, x) → f(plus_int(pos(s(0)), mult_int(pos(s(s(s(0)))), x)))
f(x) → cond1(greater_int(x, pos(s(0))), x)
cond2(true, x) → f(div_int(x, pos(s(s(0)))))
cond1(true, x) → cond2(equal_int(mod_int(x, pos(s(s(0)))), pos(0)), x)
plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(neg(x), pos(y)) → minus_nat(y, x)
plus_int(neg(x), neg(y)) → neg(plus_nat(x, y))
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
mult_int(pos(x), pos(y)) → pos(mult_nat(x, y))
mult_int(pos(x), neg(y)) → neg(mult_nat(x, y))
mult_int(neg(x), pos(y)) → neg(mult_nat(x, y))
mult_int(neg(x), neg(y)) → pos(mult_nat(x, y))
mult_nat(0, y) → 0
mult_nat(s(x), 0) → 0
mult_nat(s(x), s(y)) → plus_nat(mult_nat(x, s(y)), s(y))
greater_int(pos(0), pos(0)) → false
greater_int(pos(0), neg(0)) → false
greater_int(neg(0), pos(0)) → false
greater_int(neg(0), neg(0)) → false
greater_int(pos(0), pos(s(y))) → false
greater_int(neg(0), pos(s(y))) → false
greater_int(pos(0), neg(s(y))) → true
greater_int(neg(0), neg(s(y))) → true
greater_int(pos(s(x)), pos(0)) → true
greater_int(neg(s(x)), pos(0)) → false
greater_int(pos(s(x)), neg(0)) → true
greater_int(neg(s(x)), neg(0)) → false
greater_int(pos(s(x)), neg(s(y))) → true
greater_int(neg(s(x)), pos(s(y))) → false
greater_int(pos(s(x)), pos(s(y))) → greater_int(pos(x), pos(y))
greater_int(neg(s(x)), neg(s(y))) → greater_int(neg(x), neg(y))
div_int(pos(x), pos(s(y))) → pos(div_nat(x, s(y)))
div_int(pos(x), neg(s(y))) → neg(div_nat(x, s(y)))
div_int(neg(x), pos(s(y))) → neg(div_nat(x, s(y)))
div_int(neg(x), neg(s(y))) → pos(div_nat(x, s(y)))
div_nat(0, s(y)) → 0
div_nat(s(x), s(y)) → if(greatereq_int(pos(x), pos(y)), div_nat(minus_nat_s(x, y), s(y)), 0)
greatereq_int(pos(x), pos(0)) → true
greatereq_int(neg(0), pos(0)) → true
greatereq_int(neg(0), neg(y)) → true
greatereq_int(pos(x), neg(y)) → true
greatereq_int(pos(0), pos(s(y))) → false
greatereq_int(neg(x), pos(s(y))) → false
greatereq_int(neg(s(x)), pos(0)) → false
greatereq_int(neg(s(x)), neg(0)) → false
greatereq_int(pos(s(x)), pos(s(y))) → greatereq_int(pos(x), pos(y))
greatereq_int(neg(s(x)), neg(s(y))) → greatereq_int(neg(x), neg(y))
if(true, x, y) → x
if(false, x, y) → y
minus_nat_s(x, 0) → x
minus_nat_s(0, s(y)) → 0
minus_nat_s(s(x), s(y)) → minus_nat_s(x, y)
equal_int(pos(0), pos(0)) → true
equal_int(neg(0), pos(0)) → true
equal_int(neg(0), neg(0)) → true
equal_int(pos(0), neg(0)) → true
equal_int(pos(0), pos(s(y))) → false
equal_int(neg(0), pos(s(y))) → false
equal_int(pos(0), neg(s(y))) → false
equal_int(neg(0), neg(s(y))) → false
equal_int(pos(s(x)), pos(0)) → false
equal_int(pos(s(x)), neg(0)) → false
equal_int(neg(s(x)), pos(0)) → false
equal_int(neg(s(x)), neg(0)) → false
equal_int(pos(s(x)), neg(s(y))) → false
equal_int(neg(s(x)), pos(s(y))) → false
equal_int(pos(s(x)), pos(s(y))) → equal_int(pos(x), pos(y))
equal_int(neg(s(x)), neg(s(y))) → equal_int(neg(x), neg(y))
mod_int(pos(x), pos(y)) → pos(mod_nat(x, y))
mod_int(pos(x), neg(y)) → pos(mod_nat(x, y))
mod_int(neg(x), pos(y)) → neg(mod_nat(x, y))
mod_int(neg(x), neg(y)) → neg(mod_nat(x, y))
mod_nat(0, s(x)) → 0
mod_nat(s(x), s(y)) → if(greatereq_int(pos(x), pos(y)), mod_nat(minus_nat_s(x, y), s(y)), s(x))

The set Q consists of the following terms:

cond1(false, x0)
cond2(false, x0)
f(x0)
cond2(true, x0)
cond1(true, x0)
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
mult_int(pos(x0), pos(x1))
mult_int(pos(x0), neg(x1))
mult_int(neg(x0), pos(x1))
mult_int(neg(x0), neg(x1))
mult_nat(0, x0)
mult_nat(s(x0), 0)
mult_nat(s(x0), s(x1))
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
div_int(pos(x0), pos(s(x1)))
div_int(pos(x0), neg(s(x1)))
div_int(neg(x0), pos(s(x1)))
div_int(neg(x0), neg(s(x1)))
div_nat(0, s(x0))
div_nat(s(x0), s(x1))
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
if(true, x0, x1)
if(false, x0, x1)
minus_nat_s(x0, 0)
minus_nat_s(0, s(x0))
minus_nat_s(s(x0), s(x1))
equal_int(pos(0), pos(0))
equal_int(neg(0), pos(0))
equal_int(neg(0), neg(0))
equal_int(pos(0), neg(0))
equal_int(pos(0), pos(s(x0)))
equal_int(neg(0), pos(s(x0)))
equal_int(pos(0), neg(s(x0)))
equal_int(neg(0), neg(s(x0)))
equal_int(pos(s(x0)), pos(0))
equal_int(pos(s(x0)), neg(0))
equal_int(neg(s(x0)), pos(0))
equal_int(neg(s(x0)), neg(0))
equal_int(pos(s(x0)), neg(s(x1)))
equal_int(neg(s(x0)), pos(s(x1)))
equal_int(pos(s(x0)), pos(s(x1)))
equal_int(neg(s(x0)), neg(s(x1)))
mod_int(pos(x0), pos(x1))
mod_int(pos(x0), neg(x1))
mod_int(neg(x0), pos(x1))
mod_int(neg(x0), neg(x1))
mod_nat(0, s(x0))
mod_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.

↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
QDP
                    ↳ QReductionProof
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

GREATEREQ_INT(neg(s(x)), neg(s(y))) → GREATEREQ_INT(neg(x), neg(y))

R is empty.
The set Q consists of the following terms:

cond1(false, x0)
cond2(false, x0)
f(x0)
cond2(true, x0)
cond1(true, x0)
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
mult_int(pos(x0), pos(x1))
mult_int(pos(x0), neg(x1))
mult_int(neg(x0), pos(x1))
mult_int(neg(x0), neg(x1))
mult_nat(0, x0)
mult_nat(s(x0), 0)
mult_nat(s(x0), s(x1))
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
div_int(pos(x0), pos(s(x1)))
div_int(pos(x0), neg(s(x1)))
div_int(neg(x0), pos(s(x1)))
div_int(neg(x0), neg(s(x1)))
div_nat(0, s(x0))
div_nat(s(x0), s(x1))
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
if(true, x0, x1)
if(false, x0, x1)
minus_nat_s(x0, 0)
minus_nat_s(0, s(x0))
minus_nat_s(s(x0), s(x1))
equal_int(pos(0), pos(0))
equal_int(neg(0), pos(0))
equal_int(neg(0), neg(0))
equal_int(pos(0), neg(0))
equal_int(pos(0), pos(s(x0)))
equal_int(neg(0), pos(s(x0)))
equal_int(pos(0), neg(s(x0)))
equal_int(neg(0), neg(s(x0)))
equal_int(pos(s(x0)), pos(0))
equal_int(pos(s(x0)), neg(0))
equal_int(neg(s(x0)), pos(0))
equal_int(neg(s(x0)), neg(0))
equal_int(pos(s(x0)), neg(s(x1)))
equal_int(neg(s(x0)), pos(s(x1)))
equal_int(pos(s(x0)), pos(s(x1)))
equal_int(neg(s(x0)), neg(s(x1)))
mod_int(pos(x0), pos(x1))
mod_int(pos(x0), neg(x1))
mod_int(neg(x0), pos(x1))
mod_int(neg(x0), neg(x1))
mod_nat(0, s(x0))
mod_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].

cond1(false, x0)
cond2(false, x0)
f(x0)
cond2(true, x0)
cond1(true, x0)
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
mult_int(pos(x0), pos(x1))
mult_int(pos(x0), neg(x1))
mult_int(neg(x0), pos(x1))
mult_int(neg(x0), neg(x1))
mult_nat(0, x0)
mult_nat(s(x0), 0)
mult_nat(s(x0), s(x1))
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
div_int(pos(x0), pos(s(x1)))
div_int(pos(x0), neg(s(x1)))
div_int(neg(x0), pos(s(x1)))
div_int(neg(x0), neg(s(x1)))
div_nat(0, s(x0))
div_nat(s(x0), s(x1))
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
if(true, x0, x1)
if(false, x0, x1)
minus_nat_s(x0, 0)
minus_nat_s(0, s(x0))
minus_nat_s(s(x0), s(x1))
equal_int(pos(0), pos(0))
equal_int(neg(0), pos(0))
equal_int(neg(0), neg(0))
equal_int(pos(0), neg(0))
equal_int(pos(0), pos(s(x0)))
equal_int(neg(0), pos(s(x0)))
equal_int(pos(0), neg(s(x0)))
equal_int(neg(0), neg(s(x0)))
equal_int(pos(s(x0)), pos(0))
equal_int(pos(s(x0)), neg(0))
equal_int(neg(s(x0)), pos(0))
equal_int(neg(s(x0)), neg(0))
equal_int(pos(s(x0)), neg(s(x1)))
equal_int(neg(s(x0)), pos(s(x1)))
equal_int(pos(s(x0)), pos(s(x1)))
equal_int(neg(s(x0)), neg(s(x1)))
mod_int(pos(x0), pos(x1))
mod_int(pos(x0), neg(x1))
mod_int(neg(x0), pos(x1))
mod_int(neg(x0), neg(x1))
mod_nat(0, s(x0))
mod_nat(s(x0), s(x1))



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
QDP
                        ↳ UsableRulesReductionPairsProof
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

GREATEREQ_INT(neg(s(x)), neg(s(y))) → GREATEREQ_INT(neg(x), neg(y))

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the usable rules with reduction pair processor [LPAR04] with a polynomial ordering [POLO], all dependency pairs and the corresponding usable rules [FROCOS05] can be oriented non-strictly. All non-usable rules are removed, and those dependency pairs and usable rules that have been oriented strictly or contain non-usable symbols in their left-hand side are removed as well.

The following dependency pairs can be deleted:

GREATEREQ_INT(neg(s(x)), neg(s(y))) → GREATEREQ_INT(neg(x), neg(y))
No rules are removed from R.

Used ordering: POLO with Polynomial interpretation [POLO]:

POL(GREATEREQ_INT(x1, x2)) = 2·x1 + x2   
POL(neg(x1)) = x1   
POL(s(x1)) = 2·x1   



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ UsableRulesReductionPairsProof
QDP
                            ↳ PisEmptyProof
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
P is empty.
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
QDP
                ↳ UsableRulesProof
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

GREATEREQ_INT(pos(s(x)), pos(s(y))) → GREATEREQ_INT(pos(x), pos(y))

The TRS R consists of the following rules:

cond1(false, x) → x
cond2(false, x) → f(plus_int(pos(s(0)), mult_int(pos(s(s(s(0)))), x)))
f(x) → cond1(greater_int(x, pos(s(0))), x)
cond2(true, x) → f(div_int(x, pos(s(s(0)))))
cond1(true, x) → cond2(equal_int(mod_int(x, pos(s(s(0)))), pos(0)), x)
plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(neg(x), pos(y)) → minus_nat(y, x)
plus_int(neg(x), neg(y)) → neg(plus_nat(x, y))
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
mult_int(pos(x), pos(y)) → pos(mult_nat(x, y))
mult_int(pos(x), neg(y)) → neg(mult_nat(x, y))
mult_int(neg(x), pos(y)) → neg(mult_nat(x, y))
mult_int(neg(x), neg(y)) → pos(mult_nat(x, y))
mult_nat(0, y) → 0
mult_nat(s(x), 0) → 0
mult_nat(s(x), s(y)) → plus_nat(mult_nat(x, s(y)), s(y))
greater_int(pos(0), pos(0)) → false
greater_int(pos(0), neg(0)) → false
greater_int(neg(0), pos(0)) → false
greater_int(neg(0), neg(0)) → false
greater_int(pos(0), pos(s(y))) → false
greater_int(neg(0), pos(s(y))) → false
greater_int(pos(0), neg(s(y))) → true
greater_int(neg(0), neg(s(y))) → true
greater_int(pos(s(x)), pos(0)) → true
greater_int(neg(s(x)), pos(0)) → false
greater_int(pos(s(x)), neg(0)) → true
greater_int(neg(s(x)), neg(0)) → false
greater_int(pos(s(x)), neg(s(y))) → true
greater_int(neg(s(x)), pos(s(y))) → false
greater_int(pos(s(x)), pos(s(y))) → greater_int(pos(x), pos(y))
greater_int(neg(s(x)), neg(s(y))) → greater_int(neg(x), neg(y))
div_int(pos(x), pos(s(y))) → pos(div_nat(x, s(y)))
div_int(pos(x), neg(s(y))) → neg(div_nat(x, s(y)))
div_int(neg(x), pos(s(y))) → neg(div_nat(x, s(y)))
div_int(neg(x), neg(s(y))) → pos(div_nat(x, s(y)))
div_nat(0, s(y)) → 0
div_nat(s(x), s(y)) → if(greatereq_int(pos(x), pos(y)), div_nat(minus_nat_s(x, y), s(y)), 0)
greatereq_int(pos(x), pos(0)) → true
greatereq_int(neg(0), pos(0)) → true
greatereq_int(neg(0), neg(y)) → true
greatereq_int(pos(x), neg(y)) → true
greatereq_int(pos(0), pos(s(y))) → false
greatereq_int(neg(x), pos(s(y))) → false
greatereq_int(neg(s(x)), pos(0)) → false
greatereq_int(neg(s(x)), neg(0)) → false
greatereq_int(pos(s(x)), pos(s(y))) → greatereq_int(pos(x), pos(y))
greatereq_int(neg(s(x)), neg(s(y))) → greatereq_int(neg(x), neg(y))
if(true, x, y) → x
if(false, x, y) → y
minus_nat_s(x, 0) → x
minus_nat_s(0, s(y)) → 0
minus_nat_s(s(x), s(y)) → minus_nat_s(x, y)
equal_int(pos(0), pos(0)) → true
equal_int(neg(0), pos(0)) → true
equal_int(neg(0), neg(0)) → true
equal_int(pos(0), neg(0)) → true
equal_int(pos(0), pos(s(y))) → false
equal_int(neg(0), pos(s(y))) → false
equal_int(pos(0), neg(s(y))) → false
equal_int(neg(0), neg(s(y))) → false
equal_int(pos(s(x)), pos(0)) → false
equal_int(pos(s(x)), neg(0)) → false
equal_int(neg(s(x)), pos(0)) → false
equal_int(neg(s(x)), neg(0)) → false
equal_int(pos(s(x)), neg(s(y))) → false
equal_int(neg(s(x)), pos(s(y))) → false
equal_int(pos(s(x)), pos(s(y))) → equal_int(pos(x), pos(y))
equal_int(neg(s(x)), neg(s(y))) → equal_int(neg(x), neg(y))
mod_int(pos(x), pos(y)) → pos(mod_nat(x, y))
mod_int(pos(x), neg(y)) → pos(mod_nat(x, y))
mod_int(neg(x), pos(y)) → neg(mod_nat(x, y))
mod_int(neg(x), neg(y)) → neg(mod_nat(x, y))
mod_nat(0, s(x)) → 0
mod_nat(s(x), s(y)) → if(greatereq_int(pos(x), pos(y)), mod_nat(minus_nat_s(x, y), s(y)), s(x))

The set Q consists of the following terms:

cond1(false, x0)
cond2(false, x0)
f(x0)
cond2(true, x0)
cond1(true, x0)
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
mult_int(pos(x0), pos(x1))
mult_int(pos(x0), neg(x1))
mult_int(neg(x0), pos(x1))
mult_int(neg(x0), neg(x1))
mult_nat(0, x0)
mult_nat(s(x0), 0)
mult_nat(s(x0), s(x1))
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
div_int(pos(x0), pos(s(x1)))
div_int(pos(x0), neg(s(x1)))
div_int(neg(x0), pos(s(x1)))
div_int(neg(x0), neg(s(x1)))
div_nat(0, s(x0))
div_nat(s(x0), s(x1))
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
if(true, x0, x1)
if(false, x0, x1)
minus_nat_s(x0, 0)
minus_nat_s(0, s(x0))
minus_nat_s(s(x0), s(x1))
equal_int(pos(0), pos(0))
equal_int(neg(0), pos(0))
equal_int(neg(0), neg(0))
equal_int(pos(0), neg(0))
equal_int(pos(0), pos(s(x0)))
equal_int(neg(0), pos(s(x0)))
equal_int(pos(0), neg(s(x0)))
equal_int(neg(0), neg(s(x0)))
equal_int(pos(s(x0)), pos(0))
equal_int(pos(s(x0)), neg(0))
equal_int(neg(s(x0)), pos(0))
equal_int(neg(s(x0)), neg(0))
equal_int(pos(s(x0)), neg(s(x1)))
equal_int(neg(s(x0)), pos(s(x1)))
equal_int(pos(s(x0)), pos(s(x1)))
equal_int(neg(s(x0)), neg(s(x1)))
mod_int(pos(x0), pos(x1))
mod_int(pos(x0), neg(x1))
mod_int(neg(x0), pos(x1))
mod_int(neg(x0), neg(x1))
mod_nat(0, s(x0))
mod_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.

↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
QDP
                    ↳ QReductionProof
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

GREATEREQ_INT(pos(s(x)), pos(s(y))) → GREATEREQ_INT(pos(x), pos(y))

R is empty.
The set Q consists of the following terms:

cond1(false, x0)
cond2(false, x0)
f(x0)
cond2(true, x0)
cond1(true, x0)
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
mult_int(pos(x0), pos(x1))
mult_int(pos(x0), neg(x1))
mult_int(neg(x0), pos(x1))
mult_int(neg(x0), neg(x1))
mult_nat(0, x0)
mult_nat(s(x0), 0)
mult_nat(s(x0), s(x1))
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
div_int(pos(x0), pos(s(x1)))
div_int(pos(x0), neg(s(x1)))
div_int(neg(x0), pos(s(x1)))
div_int(neg(x0), neg(s(x1)))
div_nat(0, s(x0))
div_nat(s(x0), s(x1))
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
if(true, x0, x1)
if(false, x0, x1)
minus_nat_s(x0, 0)
minus_nat_s(0, s(x0))
minus_nat_s(s(x0), s(x1))
equal_int(pos(0), pos(0))
equal_int(neg(0), pos(0))
equal_int(neg(0), neg(0))
equal_int(pos(0), neg(0))
equal_int(pos(0), pos(s(x0)))
equal_int(neg(0), pos(s(x0)))
equal_int(pos(0), neg(s(x0)))
equal_int(neg(0), neg(s(x0)))
equal_int(pos(s(x0)), pos(0))
equal_int(pos(s(x0)), neg(0))
equal_int(neg(s(x0)), pos(0))
equal_int(neg(s(x0)), neg(0))
equal_int(pos(s(x0)), neg(s(x1)))
equal_int(neg(s(x0)), pos(s(x1)))
equal_int(pos(s(x0)), pos(s(x1)))
equal_int(neg(s(x0)), neg(s(x1)))
mod_int(pos(x0), pos(x1))
mod_int(pos(x0), neg(x1))
mod_int(neg(x0), pos(x1))
mod_int(neg(x0), neg(x1))
mod_nat(0, s(x0))
mod_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].

cond1(false, x0)
cond2(false, x0)
f(x0)
cond2(true, x0)
cond1(true, x0)
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
mult_int(pos(x0), pos(x1))
mult_int(pos(x0), neg(x1))
mult_int(neg(x0), pos(x1))
mult_int(neg(x0), neg(x1))
mult_nat(0, x0)
mult_nat(s(x0), 0)
mult_nat(s(x0), s(x1))
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
div_int(pos(x0), pos(s(x1)))
div_int(pos(x0), neg(s(x1)))
div_int(neg(x0), pos(s(x1)))
div_int(neg(x0), neg(s(x1)))
div_nat(0, s(x0))
div_nat(s(x0), s(x1))
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
if(true, x0, x1)
if(false, x0, x1)
minus_nat_s(x0, 0)
minus_nat_s(0, s(x0))
minus_nat_s(s(x0), s(x1))
equal_int(pos(0), pos(0))
equal_int(neg(0), pos(0))
equal_int(neg(0), neg(0))
equal_int(pos(0), neg(0))
equal_int(pos(0), pos(s(x0)))
equal_int(neg(0), pos(s(x0)))
equal_int(pos(0), neg(s(x0)))
equal_int(neg(0), neg(s(x0)))
equal_int(pos(s(x0)), pos(0))
equal_int(pos(s(x0)), neg(0))
equal_int(neg(s(x0)), pos(0))
equal_int(neg(s(x0)), neg(0))
equal_int(pos(s(x0)), neg(s(x1)))
equal_int(neg(s(x0)), pos(s(x1)))
equal_int(pos(s(x0)), pos(s(x1)))
equal_int(neg(s(x0)), neg(s(x1)))
mod_int(pos(x0), pos(x1))
mod_int(pos(x0), neg(x1))
mod_int(neg(x0), pos(x1))
mod_int(neg(x0), neg(x1))
mod_nat(0, s(x0))
mod_nat(s(x0), s(x1))



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
QDP
                        ↳ UsableRulesReductionPairsProof
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

GREATEREQ_INT(pos(s(x)), pos(s(y))) → GREATEREQ_INT(pos(x), pos(y))

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the usable rules with reduction pair processor [LPAR04] with a polynomial ordering [POLO], all dependency pairs and the corresponding usable rules [FROCOS05] can be oriented non-strictly. All non-usable rules are removed, and those dependency pairs and usable rules that have been oriented strictly or contain non-usable symbols in their left-hand side are removed as well.

The following dependency pairs can be deleted:

GREATEREQ_INT(pos(s(x)), pos(s(y))) → GREATEREQ_INT(pos(x), pos(y))
No rules are removed from R.

Used ordering: POLO with Polynomial interpretation [POLO]:

POL(GREATEREQ_INT(x1, x2)) = 2·x1 + x2   
POL(pos(x1)) = x1   
POL(s(x1)) = 2·x1   



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ UsableRulesReductionPairsProof
QDP
                            ↳ PisEmptyProof
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
P is empty.
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
QDP
                ↳ UsableRulesProof
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

MOD_NAT(s(x), s(y)) → MOD_NAT(minus_nat_s(x, y), s(y))

The TRS R consists of the following rules:

cond1(false, x) → x
cond2(false, x) → f(plus_int(pos(s(0)), mult_int(pos(s(s(s(0)))), x)))
f(x) → cond1(greater_int(x, pos(s(0))), x)
cond2(true, x) → f(div_int(x, pos(s(s(0)))))
cond1(true, x) → cond2(equal_int(mod_int(x, pos(s(s(0)))), pos(0)), x)
plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(neg(x), pos(y)) → minus_nat(y, x)
plus_int(neg(x), neg(y)) → neg(plus_nat(x, y))
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
mult_int(pos(x), pos(y)) → pos(mult_nat(x, y))
mult_int(pos(x), neg(y)) → neg(mult_nat(x, y))
mult_int(neg(x), pos(y)) → neg(mult_nat(x, y))
mult_int(neg(x), neg(y)) → pos(mult_nat(x, y))
mult_nat(0, y) → 0
mult_nat(s(x), 0) → 0
mult_nat(s(x), s(y)) → plus_nat(mult_nat(x, s(y)), s(y))
greater_int(pos(0), pos(0)) → false
greater_int(pos(0), neg(0)) → false
greater_int(neg(0), pos(0)) → false
greater_int(neg(0), neg(0)) → false
greater_int(pos(0), pos(s(y))) → false
greater_int(neg(0), pos(s(y))) → false
greater_int(pos(0), neg(s(y))) → true
greater_int(neg(0), neg(s(y))) → true
greater_int(pos(s(x)), pos(0)) → true
greater_int(neg(s(x)), pos(0)) → false
greater_int(pos(s(x)), neg(0)) → true
greater_int(neg(s(x)), neg(0)) → false
greater_int(pos(s(x)), neg(s(y))) → true
greater_int(neg(s(x)), pos(s(y))) → false
greater_int(pos(s(x)), pos(s(y))) → greater_int(pos(x), pos(y))
greater_int(neg(s(x)), neg(s(y))) → greater_int(neg(x), neg(y))
div_int(pos(x), pos(s(y))) → pos(div_nat(x, s(y)))
div_int(pos(x), neg(s(y))) → neg(div_nat(x, s(y)))
div_int(neg(x), pos(s(y))) → neg(div_nat(x, s(y)))
div_int(neg(x), neg(s(y))) → pos(div_nat(x, s(y)))
div_nat(0, s(y)) → 0
div_nat(s(x), s(y)) → if(greatereq_int(pos(x), pos(y)), div_nat(minus_nat_s(x, y), s(y)), 0)
greatereq_int(pos(x), pos(0)) → true
greatereq_int(neg(0), pos(0)) → true
greatereq_int(neg(0), neg(y)) → true
greatereq_int(pos(x), neg(y)) → true
greatereq_int(pos(0), pos(s(y))) → false
greatereq_int(neg(x), pos(s(y))) → false
greatereq_int(neg(s(x)), pos(0)) → false
greatereq_int(neg(s(x)), neg(0)) → false
greatereq_int(pos(s(x)), pos(s(y))) → greatereq_int(pos(x), pos(y))
greatereq_int(neg(s(x)), neg(s(y))) → greatereq_int(neg(x), neg(y))
if(true, x, y) → x
if(false, x, y) → y
minus_nat_s(x, 0) → x
minus_nat_s(0, s(y)) → 0
minus_nat_s(s(x), s(y)) → minus_nat_s(x, y)
equal_int(pos(0), pos(0)) → true
equal_int(neg(0), pos(0)) → true
equal_int(neg(0), neg(0)) → true
equal_int(pos(0), neg(0)) → true
equal_int(pos(0), pos(s(y))) → false
equal_int(neg(0), pos(s(y))) → false
equal_int(pos(0), neg(s(y))) → false
equal_int(neg(0), neg(s(y))) → false
equal_int(pos(s(x)), pos(0)) → false
equal_int(pos(s(x)), neg(0)) → false
equal_int(neg(s(x)), pos(0)) → false
equal_int(neg(s(x)), neg(0)) → false
equal_int(pos(s(x)), neg(s(y))) → false
equal_int(neg(s(x)), pos(s(y))) → false
equal_int(pos(s(x)), pos(s(y))) → equal_int(pos(x), pos(y))
equal_int(neg(s(x)), neg(s(y))) → equal_int(neg(x), neg(y))
mod_int(pos(x), pos(y)) → pos(mod_nat(x, y))
mod_int(pos(x), neg(y)) → pos(mod_nat(x, y))
mod_int(neg(x), pos(y)) → neg(mod_nat(x, y))
mod_int(neg(x), neg(y)) → neg(mod_nat(x, y))
mod_nat(0, s(x)) → 0
mod_nat(s(x), s(y)) → if(greatereq_int(pos(x), pos(y)), mod_nat(minus_nat_s(x, y), s(y)), s(x))

The set Q consists of the following terms:

cond1(false, x0)
cond2(false, x0)
f(x0)
cond2(true, x0)
cond1(true, x0)
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
mult_int(pos(x0), pos(x1))
mult_int(pos(x0), neg(x1))
mult_int(neg(x0), pos(x1))
mult_int(neg(x0), neg(x1))
mult_nat(0, x0)
mult_nat(s(x0), 0)
mult_nat(s(x0), s(x1))
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
div_int(pos(x0), pos(s(x1)))
div_int(pos(x0), neg(s(x1)))
div_int(neg(x0), pos(s(x1)))
div_int(neg(x0), neg(s(x1)))
div_nat(0, s(x0))
div_nat(s(x0), s(x1))
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
if(true, x0, x1)
if(false, x0, x1)
minus_nat_s(x0, 0)
minus_nat_s(0, s(x0))
minus_nat_s(s(x0), s(x1))
equal_int(pos(0), pos(0))
equal_int(neg(0), pos(0))
equal_int(neg(0), neg(0))
equal_int(pos(0), neg(0))
equal_int(pos(0), pos(s(x0)))
equal_int(neg(0), pos(s(x0)))
equal_int(pos(0), neg(s(x0)))
equal_int(neg(0), neg(s(x0)))
equal_int(pos(s(x0)), pos(0))
equal_int(pos(s(x0)), neg(0))
equal_int(neg(s(x0)), pos(0))
equal_int(neg(s(x0)), neg(0))
equal_int(pos(s(x0)), neg(s(x1)))
equal_int(neg(s(x0)), pos(s(x1)))
equal_int(pos(s(x0)), pos(s(x1)))
equal_int(neg(s(x0)), neg(s(x1)))
mod_int(pos(x0), pos(x1))
mod_int(pos(x0), neg(x1))
mod_int(neg(x0), pos(x1))
mod_int(neg(x0), neg(x1))
mod_nat(0, s(x0))
mod_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.

↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
QDP
                    ↳ QReductionProof
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

MOD_NAT(s(x), s(y)) → MOD_NAT(minus_nat_s(x, y), s(y))

The TRS R consists of the following rules:

minus_nat_s(x, 0) → x
minus_nat_s(0, s(y)) → 0
minus_nat_s(s(x), s(y)) → minus_nat_s(x, y)

The set Q consists of the following terms:

cond1(false, x0)
cond2(false, x0)
f(x0)
cond2(true, x0)
cond1(true, x0)
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
mult_int(pos(x0), pos(x1))
mult_int(pos(x0), neg(x1))
mult_int(neg(x0), pos(x1))
mult_int(neg(x0), neg(x1))
mult_nat(0, x0)
mult_nat(s(x0), 0)
mult_nat(s(x0), s(x1))
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
div_int(pos(x0), pos(s(x1)))
div_int(pos(x0), neg(s(x1)))
div_int(neg(x0), pos(s(x1)))
div_int(neg(x0), neg(s(x1)))
div_nat(0, s(x0))
div_nat(s(x0), s(x1))
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
if(true, x0, x1)
if(false, x0, x1)
minus_nat_s(x0, 0)
minus_nat_s(0, s(x0))
minus_nat_s(s(x0), s(x1))
equal_int(pos(0), pos(0))
equal_int(neg(0), pos(0))
equal_int(neg(0), neg(0))
equal_int(pos(0), neg(0))
equal_int(pos(0), pos(s(x0)))
equal_int(neg(0), pos(s(x0)))
equal_int(pos(0), neg(s(x0)))
equal_int(neg(0), neg(s(x0)))
equal_int(pos(s(x0)), pos(0))
equal_int(pos(s(x0)), neg(0))
equal_int(neg(s(x0)), pos(0))
equal_int(neg(s(x0)), neg(0))
equal_int(pos(s(x0)), neg(s(x1)))
equal_int(neg(s(x0)), pos(s(x1)))
equal_int(pos(s(x0)), pos(s(x1)))
equal_int(neg(s(x0)), neg(s(x1)))
mod_int(pos(x0), pos(x1))
mod_int(pos(x0), neg(x1))
mod_int(neg(x0), pos(x1))
mod_int(neg(x0), neg(x1))
mod_nat(0, s(x0))
mod_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].

cond1(false, x0)
cond2(false, x0)
f(x0)
cond2(true, x0)
cond1(true, x0)
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
mult_int(pos(x0), pos(x1))
mult_int(pos(x0), neg(x1))
mult_int(neg(x0), pos(x1))
mult_int(neg(x0), neg(x1))
mult_nat(0, x0)
mult_nat(s(x0), 0)
mult_nat(s(x0), s(x1))
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
div_int(pos(x0), pos(s(x1)))
div_int(pos(x0), neg(s(x1)))
div_int(neg(x0), pos(s(x1)))
div_int(neg(x0), neg(s(x1)))
div_nat(0, s(x0))
div_nat(s(x0), s(x1))
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
if(true, x0, x1)
if(false, x0, x1)
equal_int(pos(0), pos(0))
equal_int(neg(0), pos(0))
equal_int(neg(0), neg(0))
equal_int(pos(0), neg(0))
equal_int(pos(0), pos(s(x0)))
equal_int(neg(0), pos(s(x0)))
equal_int(pos(0), neg(s(x0)))
equal_int(neg(0), neg(s(x0)))
equal_int(pos(s(x0)), pos(0))
equal_int(pos(s(x0)), neg(0))
equal_int(neg(s(x0)), pos(0))
equal_int(neg(s(x0)), neg(0))
equal_int(pos(s(x0)), neg(s(x1)))
equal_int(neg(s(x0)), pos(s(x1)))
equal_int(pos(s(x0)), pos(s(x1)))
equal_int(neg(s(x0)), neg(s(x1)))
mod_int(pos(x0), pos(x1))
mod_int(pos(x0), neg(x1))
mod_int(neg(x0), pos(x1))
mod_int(neg(x0), neg(x1))
mod_nat(0, s(x0))
mod_nat(s(x0), s(x1))



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
QDP
                        ↳ QDPOrderProof
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

MOD_NAT(s(x), s(y)) → MOD_NAT(minus_nat_s(x, y), s(y))

The TRS R consists of the following rules:

minus_nat_s(x, 0) → x
minus_nat_s(0, s(y)) → 0
minus_nat_s(s(x), s(y)) → minus_nat_s(x, y)

The set Q consists of the following terms:

minus_nat_s(x0, 0)
minus_nat_s(0, s(x0))
minus_nat_s(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


MOD_NAT(s(x), s(y)) → MOD_NAT(minus_nat_s(x, y), s(y))
The remaining pairs can at least be oriented weakly.
none
Used ordering: Polynomial interpretation [POLO]:

POL(0) = 0   
POL(MOD_NAT(x1, x2)) = x1   
POL(minus_nat_s(x1, x2)) = x1   
POL(s(x1)) = 1 + x1   

The following usable rules [FROCOS05] were oriented:

minus_nat_s(x, 0) → x
minus_nat_s(0, s(y)) → 0
minus_nat_s(s(x), s(y)) → minus_nat_s(x, y)



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ QDPOrderProof
QDP
                            ↳ PisEmptyProof
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
P is empty.
The TRS R consists of the following rules:

minus_nat_s(x, 0) → x
minus_nat_s(0, s(y)) → 0
minus_nat_s(s(x), s(y)) → minus_nat_s(x, y)

The set Q consists of the following terms:

minus_nat_s(x0, 0)
minus_nat_s(0, s(x0))
minus_nat_s(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
QDP
                ↳ UsableRulesProof
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

DIV_NAT(s(x), s(y)) → DIV_NAT(minus_nat_s(x, y), s(y))

The TRS R consists of the following rules:

cond1(false, x) → x
cond2(false, x) → f(plus_int(pos(s(0)), mult_int(pos(s(s(s(0)))), x)))
f(x) → cond1(greater_int(x, pos(s(0))), x)
cond2(true, x) → f(div_int(x, pos(s(s(0)))))
cond1(true, x) → cond2(equal_int(mod_int(x, pos(s(s(0)))), pos(0)), x)
plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(neg(x), pos(y)) → minus_nat(y, x)
plus_int(neg(x), neg(y)) → neg(plus_nat(x, y))
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
mult_int(pos(x), pos(y)) → pos(mult_nat(x, y))
mult_int(pos(x), neg(y)) → neg(mult_nat(x, y))
mult_int(neg(x), pos(y)) → neg(mult_nat(x, y))
mult_int(neg(x), neg(y)) → pos(mult_nat(x, y))
mult_nat(0, y) → 0
mult_nat(s(x), 0) → 0
mult_nat(s(x), s(y)) → plus_nat(mult_nat(x, s(y)), s(y))
greater_int(pos(0), pos(0)) → false
greater_int(pos(0), neg(0)) → false
greater_int(neg(0), pos(0)) → false
greater_int(neg(0), neg(0)) → false
greater_int(pos(0), pos(s(y))) → false
greater_int(neg(0), pos(s(y))) → false
greater_int(pos(0), neg(s(y))) → true
greater_int(neg(0), neg(s(y))) → true
greater_int(pos(s(x)), pos(0)) → true
greater_int(neg(s(x)), pos(0)) → false
greater_int(pos(s(x)), neg(0)) → true
greater_int(neg(s(x)), neg(0)) → false
greater_int(pos(s(x)), neg(s(y))) → true
greater_int(neg(s(x)), pos(s(y))) → false
greater_int(pos(s(x)), pos(s(y))) → greater_int(pos(x), pos(y))
greater_int(neg(s(x)), neg(s(y))) → greater_int(neg(x), neg(y))
div_int(pos(x), pos(s(y))) → pos(div_nat(x, s(y)))
div_int(pos(x), neg(s(y))) → neg(div_nat(x, s(y)))
div_int(neg(x), pos(s(y))) → neg(div_nat(x, s(y)))
div_int(neg(x), neg(s(y))) → pos(div_nat(x, s(y)))
div_nat(0, s(y)) → 0
div_nat(s(x), s(y)) → if(greatereq_int(pos(x), pos(y)), div_nat(minus_nat_s(x, y), s(y)), 0)
greatereq_int(pos(x), pos(0)) → true
greatereq_int(neg(0), pos(0)) → true
greatereq_int(neg(0), neg(y)) → true
greatereq_int(pos(x), neg(y)) → true
greatereq_int(pos(0), pos(s(y))) → false
greatereq_int(neg(x), pos(s(y))) → false
greatereq_int(neg(s(x)), pos(0)) → false
greatereq_int(neg(s(x)), neg(0)) → false
greatereq_int(pos(s(x)), pos(s(y))) → greatereq_int(pos(x), pos(y))
greatereq_int(neg(s(x)), neg(s(y))) → greatereq_int(neg(x), neg(y))
if(true, x, y) → x
if(false, x, y) → y
minus_nat_s(x, 0) → x
minus_nat_s(0, s(y)) → 0
minus_nat_s(s(x), s(y)) → minus_nat_s(x, y)
equal_int(pos(0), pos(0)) → true
equal_int(neg(0), pos(0)) → true
equal_int(neg(0), neg(0)) → true
equal_int(pos(0), neg(0)) → true
equal_int(pos(0), pos(s(y))) → false
equal_int(neg(0), pos(s(y))) → false
equal_int(pos(0), neg(s(y))) → false
equal_int(neg(0), neg(s(y))) → false
equal_int(pos(s(x)), pos(0)) → false
equal_int(pos(s(x)), neg(0)) → false
equal_int(neg(s(x)), pos(0)) → false
equal_int(neg(s(x)), neg(0)) → false
equal_int(pos(s(x)), neg(s(y))) → false
equal_int(neg(s(x)), pos(s(y))) → false
equal_int(pos(s(x)), pos(s(y))) → equal_int(pos(x), pos(y))
equal_int(neg(s(x)), neg(s(y))) → equal_int(neg(x), neg(y))
mod_int(pos(x), pos(y)) → pos(mod_nat(x, y))
mod_int(pos(x), neg(y)) → pos(mod_nat(x, y))
mod_int(neg(x), pos(y)) → neg(mod_nat(x, y))
mod_int(neg(x), neg(y)) → neg(mod_nat(x, y))
mod_nat(0, s(x)) → 0
mod_nat(s(x), s(y)) → if(greatereq_int(pos(x), pos(y)), mod_nat(minus_nat_s(x, y), s(y)), s(x))

The set Q consists of the following terms:

cond1(false, x0)
cond2(false, x0)
f(x0)
cond2(true, x0)
cond1(true, x0)
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
mult_int(pos(x0), pos(x1))
mult_int(pos(x0), neg(x1))
mult_int(neg(x0), pos(x1))
mult_int(neg(x0), neg(x1))
mult_nat(0, x0)
mult_nat(s(x0), 0)
mult_nat(s(x0), s(x1))
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
div_int(pos(x0), pos(s(x1)))
div_int(pos(x0), neg(s(x1)))
div_int(neg(x0), pos(s(x1)))
div_int(neg(x0), neg(s(x1)))
div_nat(0, s(x0))
div_nat(s(x0), s(x1))
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
if(true, x0, x1)
if(false, x0, x1)
minus_nat_s(x0, 0)
minus_nat_s(0, s(x0))
minus_nat_s(s(x0), s(x1))
equal_int(pos(0), pos(0))
equal_int(neg(0), pos(0))
equal_int(neg(0), neg(0))
equal_int(pos(0), neg(0))
equal_int(pos(0), pos(s(x0)))
equal_int(neg(0), pos(s(x0)))
equal_int(pos(0), neg(s(x0)))
equal_int(neg(0), neg(s(x0)))
equal_int(pos(s(x0)), pos(0))
equal_int(pos(s(x0)), neg(0))
equal_int(neg(s(x0)), pos(0))
equal_int(neg(s(x0)), neg(0))
equal_int(pos(s(x0)), neg(s(x1)))
equal_int(neg(s(x0)), pos(s(x1)))
equal_int(pos(s(x0)), pos(s(x1)))
equal_int(neg(s(x0)), neg(s(x1)))
mod_int(pos(x0), pos(x1))
mod_int(pos(x0), neg(x1))
mod_int(neg(x0), pos(x1))
mod_int(neg(x0), neg(x1))
mod_nat(0, s(x0))
mod_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.

↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
QDP
                    ↳ QReductionProof
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

DIV_NAT(s(x), s(y)) → DIV_NAT(minus_nat_s(x, y), s(y))

The TRS R consists of the following rules:

minus_nat_s(x, 0) → x
minus_nat_s(0, s(y)) → 0
minus_nat_s(s(x), s(y)) → minus_nat_s(x, y)

The set Q consists of the following terms:

cond1(false, x0)
cond2(false, x0)
f(x0)
cond2(true, x0)
cond1(true, x0)
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
mult_int(pos(x0), pos(x1))
mult_int(pos(x0), neg(x1))
mult_int(neg(x0), pos(x1))
mult_int(neg(x0), neg(x1))
mult_nat(0, x0)
mult_nat(s(x0), 0)
mult_nat(s(x0), s(x1))
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
div_int(pos(x0), pos(s(x1)))
div_int(pos(x0), neg(s(x1)))
div_int(neg(x0), pos(s(x1)))
div_int(neg(x0), neg(s(x1)))
div_nat(0, s(x0))
div_nat(s(x0), s(x1))
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
if(true, x0, x1)
if(false, x0, x1)
minus_nat_s(x0, 0)
minus_nat_s(0, s(x0))
minus_nat_s(s(x0), s(x1))
equal_int(pos(0), pos(0))
equal_int(neg(0), pos(0))
equal_int(neg(0), neg(0))
equal_int(pos(0), neg(0))
equal_int(pos(0), pos(s(x0)))
equal_int(neg(0), pos(s(x0)))
equal_int(pos(0), neg(s(x0)))
equal_int(neg(0), neg(s(x0)))
equal_int(pos(s(x0)), pos(0))
equal_int(pos(s(x0)), neg(0))
equal_int(neg(s(x0)), pos(0))
equal_int(neg(s(x0)), neg(0))
equal_int(pos(s(x0)), neg(s(x1)))
equal_int(neg(s(x0)), pos(s(x1)))
equal_int(pos(s(x0)), pos(s(x1)))
equal_int(neg(s(x0)), neg(s(x1)))
mod_int(pos(x0), pos(x1))
mod_int(pos(x0), neg(x1))
mod_int(neg(x0), pos(x1))
mod_int(neg(x0), neg(x1))
mod_nat(0, s(x0))
mod_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].

cond1(false, x0)
cond2(false, x0)
f(x0)
cond2(true, x0)
cond1(true, x0)
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
mult_int(pos(x0), pos(x1))
mult_int(pos(x0), neg(x1))
mult_int(neg(x0), pos(x1))
mult_int(neg(x0), neg(x1))
mult_nat(0, x0)
mult_nat(s(x0), 0)
mult_nat(s(x0), s(x1))
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
div_int(pos(x0), pos(s(x1)))
div_int(pos(x0), neg(s(x1)))
div_int(neg(x0), pos(s(x1)))
div_int(neg(x0), neg(s(x1)))
div_nat(0, s(x0))
div_nat(s(x0), s(x1))
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
if(true, x0, x1)
if(false, x0, x1)
equal_int(pos(0), pos(0))
equal_int(neg(0), pos(0))
equal_int(neg(0), neg(0))
equal_int(pos(0), neg(0))
equal_int(pos(0), pos(s(x0)))
equal_int(neg(0), pos(s(x0)))
equal_int(pos(0), neg(s(x0)))
equal_int(neg(0), neg(s(x0)))
equal_int(pos(s(x0)), pos(0))
equal_int(pos(s(x0)), neg(0))
equal_int(neg(s(x0)), pos(0))
equal_int(neg(s(x0)), neg(0))
equal_int(pos(s(x0)), neg(s(x1)))
equal_int(neg(s(x0)), pos(s(x1)))
equal_int(pos(s(x0)), pos(s(x1)))
equal_int(neg(s(x0)), neg(s(x1)))
mod_int(pos(x0), pos(x1))
mod_int(pos(x0), neg(x1))
mod_int(neg(x0), pos(x1))
mod_int(neg(x0), neg(x1))
mod_nat(0, s(x0))
mod_nat(s(x0), s(x1))



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
QDP
                        ↳ QDPOrderProof
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

DIV_NAT(s(x), s(y)) → DIV_NAT(minus_nat_s(x, y), s(y))

The TRS R consists of the following rules:

minus_nat_s(x, 0) → x
minus_nat_s(0, s(y)) → 0
minus_nat_s(s(x), s(y)) → minus_nat_s(x, y)

The set Q consists of the following terms:

minus_nat_s(x0, 0)
minus_nat_s(0, s(x0))
minus_nat_s(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


DIV_NAT(s(x), s(y)) → DIV_NAT(minus_nat_s(x, y), s(y))
The remaining pairs can at least be oriented weakly.
none
Used ordering: Matrix interpretation [MATRO]:

POL(DIV_NAT(x1, x2)) =
/11\
\01/
·x1 +
/0\
\1/
+
/00\
\11/
·x2

POL(s(x1)) =
/01\
\11/
·x1 +
/1\
\1/

POL(minus_nat_s(x1, x2)) =
/11\
\01/
·x1 +
/1\
\0/
+
/00\
\00/
·x2

POL(0) =
/1\
\0/

The following usable rules [FROCOS05] were oriented:

minus_nat_s(s(x), s(y)) → minus_nat_s(x, y)
minus_nat_s(0, s(y)) → 0
minus_nat_s(x, 0) → x



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ QDPOrderProof
QDP
                            ↳ PisEmptyProof
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
P is empty.
The TRS R consists of the following rules:

minus_nat_s(x, 0) → x
minus_nat_s(0, s(y)) → 0
minus_nat_s(s(x), s(y)) → minus_nat_s(x, y)

The set Q consists of the following terms:

minus_nat_s(x0, 0)
minus_nat_s(0, s(x0))
minus_nat_s(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
QDP
                ↳ UsableRulesProof
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

GREATER_INT(neg(s(x)), neg(s(y))) → GREATER_INT(neg(x), neg(y))

The TRS R consists of the following rules:

cond1(false, x) → x
cond2(false, x) → f(plus_int(pos(s(0)), mult_int(pos(s(s(s(0)))), x)))
f(x) → cond1(greater_int(x, pos(s(0))), x)
cond2(true, x) → f(div_int(x, pos(s(s(0)))))
cond1(true, x) → cond2(equal_int(mod_int(x, pos(s(s(0)))), pos(0)), x)
plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(neg(x), pos(y)) → minus_nat(y, x)
plus_int(neg(x), neg(y)) → neg(plus_nat(x, y))
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
mult_int(pos(x), pos(y)) → pos(mult_nat(x, y))
mult_int(pos(x), neg(y)) → neg(mult_nat(x, y))
mult_int(neg(x), pos(y)) → neg(mult_nat(x, y))
mult_int(neg(x), neg(y)) → pos(mult_nat(x, y))
mult_nat(0, y) → 0
mult_nat(s(x), 0) → 0
mult_nat(s(x), s(y)) → plus_nat(mult_nat(x, s(y)), s(y))
greater_int(pos(0), pos(0)) → false
greater_int(pos(0), neg(0)) → false
greater_int(neg(0), pos(0)) → false
greater_int(neg(0), neg(0)) → false
greater_int(pos(0), pos(s(y))) → false
greater_int(neg(0), pos(s(y))) → false
greater_int(pos(0), neg(s(y))) → true
greater_int(neg(0), neg(s(y))) → true
greater_int(pos(s(x)), pos(0)) → true
greater_int(neg(s(x)), pos(0)) → false
greater_int(pos(s(x)), neg(0)) → true
greater_int(neg(s(x)), neg(0)) → false
greater_int(pos(s(x)), neg(s(y))) → true
greater_int(neg(s(x)), pos(s(y))) → false
greater_int(pos(s(x)), pos(s(y))) → greater_int(pos(x), pos(y))
greater_int(neg(s(x)), neg(s(y))) → greater_int(neg(x), neg(y))
div_int(pos(x), pos(s(y))) → pos(div_nat(x, s(y)))
div_int(pos(x), neg(s(y))) → neg(div_nat(x, s(y)))
div_int(neg(x), pos(s(y))) → neg(div_nat(x, s(y)))
div_int(neg(x), neg(s(y))) → pos(div_nat(x, s(y)))
div_nat(0, s(y)) → 0
div_nat(s(x), s(y)) → if(greatereq_int(pos(x), pos(y)), div_nat(minus_nat_s(x, y), s(y)), 0)
greatereq_int(pos(x), pos(0)) → true
greatereq_int(neg(0), pos(0)) → true
greatereq_int(neg(0), neg(y)) → true
greatereq_int(pos(x), neg(y)) → true
greatereq_int(pos(0), pos(s(y))) → false
greatereq_int(neg(x), pos(s(y))) → false
greatereq_int(neg(s(x)), pos(0)) → false
greatereq_int(neg(s(x)), neg(0)) → false
greatereq_int(pos(s(x)), pos(s(y))) → greatereq_int(pos(x), pos(y))
greatereq_int(neg(s(x)), neg(s(y))) → greatereq_int(neg(x), neg(y))
if(true, x, y) → x
if(false, x, y) → y
minus_nat_s(x, 0) → x
minus_nat_s(0, s(y)) → 0
minus_nat_s(s(x), s(y)) → minus_nat_s(x, y)
equal_int(pos(0), pos(0)) → true
equal_int(neg(0), pos(0)) → true
equal_int(neg(0), neg(0)) → true
equal_int(pos(0), neg(0)) → true
equal_int(pos(0), pos(s(y))) → false
equal_int(neg(0), pos(s(y))) → false
equal_int(pos(0), neg(s(y))) → false
equal_int(neg(0), neg(s(y))) → false
equal_int(pos(s(x)), pos(0)) → false
equal_int(pos(s(x)), neg(0)) → false
equal_int(neg(s(x)), pos(0)) → false
equal_int(neg(s(x)), neg(0)) → false
equal_int(pos(s(x)), neg(s(y))) → false
equal_int(neg(s(x)), pos(s(y))) → false
equal_int(pos(s(x)), pos(s(y))) → equal_int(pos(x), pos(y))
equal_int(neg(s(x)), neg(s(y))) → equal_int(neg(x), neg(y))
mod_int(pos(x), pos(y)) → pos(mod_nat(x, y))
mod_int(pos(x), neg(y)) → pos(mod_nat(x, y))
mod_int(neg(x), pos(y)) → neg(mod_nat(x, y))
mod_int(neg(x), neg(y)) → neg(mod_nat(x, y))
mod_nat(0, s(x)) → 0
mod_nat(s(x), s(y)) → if(greatereq_int(pos(x), pos(y)), mod_nat(minus_nat_s(x, y), s(y)), s(x))

The set Q consists of the following terms:

cond1(false, x0)
cond2(false, x0)
f(x0)
cond2(true, x0)
cond1(true, x0)
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
mult_int(pos(x0), pos(x1))
mult_int(pos(x0), neg(x1))
mult_int(neg(x0), pos(x1))
mult_int(neg(x0), neg(x1))
mult_nat(0, x0)
mult_nat(s(x0), 0)
mult_nat(s(x0), s(x1))
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
div_int(pos(x0), pos(s(x1)))
div_int(pos(x0), neg(s(x1)))
div_int(neg(x0), pos(s(x1)))
div_int(neg(x0), neg(s(x1)))
div_nat(0, s(x0))
div_nat(s(x0), s(x1))
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
if(true, x0, x1)
if(false, x0, x1)
minus_nat_s(x0, 0)
minus_nat_s(0, s(x0))
minus_nat_s(s(x0), s(x1))
equal_int(pos(0), pos(0))
equal_int(neg(0), pos(0))
equal_int(neg(0), neg(0))
equal_int(pos(0), neg(0))
equal_int(pos(0), pos(s(x0)))
equal_int(neg(0), pos(s(x0)))
equal_int(pos(0), neg(s(x0)))
equal_int(neg(0), neg(s(x0)))
equal_int(pos(s(x0)), pos(0))
equal_int(pos(s(x0)), neg(0))
equal_int(neg(s(x0)), pos(0))
equal_int(neg(s(x0)), neg(0))
equal_int(pos(s(x0)), neg(s(x1)))
equal_int(neg(s(x0)), pos(s(x1)))
equal_int(pos(s(x0)), pos(s(x1)))
equal_int(neg(s(x0)), neg(s(x1)))
mod_int(pos(x0), pos(x1))
mod_int(pos(x0), neg(x1))
mod_int(neg(x0), pos(x1))
mod_int(neg(x0), neg(x1))
mod_nat(0, s(x0))
mod_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.

↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
QDP
                    ↳ QReductionProof
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

GREATER_INT(neg(s(x)), neg(s(y))) → GREATER_INT(neg(x), neg(y))

R is empty.
The set Q consists of the following terms:

cond1(false, x0)
cond2(false, x0)
f(x0)
cond2(true, x0)
cond1(true, x0)
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
mult_int(pos(x0), pos(x1))
mult_int(pos(x0), neg(x1))
mult_int(neg(x0), pos(x1))
mult_int(neg(x0), neg(x1))
mult_nat(0, x0)
mult_nat(s(x0), 0)
mult_nat(s(x0), s(x1))
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
div_int(pos(x0), pos(s(x1)))
div_int(pos(x0), neg(s(x1)))
div_int(neg(x0), pos(s(x1)))
div_int(neg(x0), neg(s(x1)))
div_nat(0, s(x0))
div_nat(s(x0), s(x1))
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
if(true, x0, x1)
if(false, x0, x1)
minus_nat_s(x0, 0)
minus_nat_s(0, s(x0))
minus_nat_s(s(x0), s(x1))
equal_int(pos(0), pos(0))
equal_int(neg(0), pos(0))
equal_int(neg(0), neg(0))
equal_int(pos(0), neg(0))
equal_int(pos(0), pos(s(x0)))
equal_int(neg(0), pos(s(x0)))
equal_int(pos(0), neg(s(x0)))
equal_int(neg(0), neg(s(x0)))
equal_int(pos(s(x0)), pos(0))
equal_int(pos(s(x0)), neg(0))
equal_int(neg(s(x0)), pos(0))
equal_int(neg(s(x0)), neg(0))
equal_int(pos(s(x0)), neg(s(x1)))
equal_int(neg(s(x0)), pos(s(x1)))
equal_int(pos(s(x0)), pos(s(x1)))
equal_int(neg(s(x0)), neg(s(x1)))
mod_int(pos(x0), pos(x1))
mod_int(pos(x0), neg(x1))
mod_int(neg(x0), pos(x1))
mod_int(neg(x0), neg(x1))
mod_nat(0, s(x0))
mod_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].

cond1(false, x0)
cond2(false, x0)
f(x0)
cond2(true, x0)
cond1(true, x0)
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
mult_int(pos(x0), pos(x1))
mult_int(pos(x0), neg(x1))
mult_int(neg(x0), pos(x1))
mult_int(neg(x0), neg(x1))
mult_nat(0, x0)
mult_nat(s(x0), 0)
mult_nat(s(x0), s(x1))
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
div_int(pos(x0), pos(s(x1)))
div_int(pos(x0), neg(s(x1)))
div_int(neg(x0), pos(s(x1)))
div_int(neg(x0), neg(s(x1)))
div_nat(0, s(x0))
div_nat(s(x0), s(x1))
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
if(true, x0, x1)
if(false, x0, x1)
minus_nat_s(x0, 0)
minus_nat_s(0, s(x0))
minus_nat_s(s(x0), s(x1))
equal_int(pos(0), pos(0))
equal_int(neg(0), pos(0))
equal_int(neg(0), neg(0))
equal_int(pos(0), neg(0))
equal_int(pos(0), pos(s(x0)))
equal_int(neg(0), pos(s(x0)))
equal_int(pos(0), neg(s(x0)))
equal_int(neg(0), neg(s(x0)))
equal_int(pos(s(x0)), pos(0))
equal_int(pos(s(x0)), neg(0))
equal_int(neg(s(x0)), pos(0))
equal_int(neg(s(x0)), neg(0))
equal_int(pos(s(x0)), neg(s(x1)))
equal_int(neg(s(x0)), pos(s(x1)))
equal_int(pos(s(x0)), pos(s(x1)))
equal_int(neg(s(x0)), neg(s(x1)))
mod_int(pos(x0), pos(x1))
mod_int(pos(x0), neg(x1))
mod_int(neg(x0), pos(x1))
mod_int(neg(x0), neg(x1))
mod_nat(0, s(x0))
mod_nat(s(x0), s(x1))



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
QDP
                        ↳ UsableRulesReductionPairsProof
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

GREATER_INT(neg(s(x)), neg(s(y))) → GREATER_INT(neg(x), neg(y))

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the usable rules with reduction pair processor [LPAR04] with a polynomial ordering [POLO], all dependency pairs and the corresponding usable rules [FROCOS05] can be oriented non-strictly. All non-usable rules are removed, and those dependency pairs and usable rules that have been oriented strictly or contain non-usable symbols in their left-hand side are removed as well.

The following dependency pairs can be deleted:

GREATER_INT(neg(s(x)), neg(s(y))) → GREATER_INT(neg(x), neg(y))
No rules are removed from R.

Used ordering: POLO with Polynomial interpretation [POLO]:

POL(GREATER_INT(x1, x2)) = 2·x1 + x2   
POL(neg(x1)) = x1   
POL(s(x1)) = 2·x1   



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ UsableRulesReductionPairsProof
QDP
                            ↳ PisEmptyProof
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
P is empty.
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
QDP
                ↳ UsableRulesProof
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

GREATER_INT(pos(s(x)), pos(s(y))) → GREATER_INT(pos(x), pos(y))

The TRS R consists of the following rules:

cond1(false, x) → x
cond2(false, x) → f(plus_int(pos(s(0)), mult_int(pos(s(s(s(0)))), x)))
f(x) → cond1(greater_int(x, pos(s(0))), x)
cond2(true, x) → f(div_int(x, pos(s(s(0)))))
cond1(true, x) → cond2(equal_int(mod_int(x, pos(s(s(0)))), pos(0)), x)
plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(neg(x), pos(y)) → minus_nat(y, x)
plus_int(neg(x), neg(y)) → neg(plus_nat(x, y))
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
mult_int(pos(x), pos(y)) → pos(mult_nat(x, y))
mult_int(pos(x), neg(y)) → neg(mult_nat(x, y))
mult_int(neg(x), pos(y)) → neg(mult_nat(x, y))
mult_int(neg(x), neg(y)) → pos(mult_nat(x, y))
mult_nat(0, y) → 0
mult_nat(s(x), 0) → 0
mult_nat(s(x), s(y)) → plus_nat(mult_nat(x, s(y)), s(y))
greater_int(pos(0), pos(0)) → false
greater_int(pos(0), neg(0)) → false
greater_int(neg(0), pos(0)) → false
greater_int(neg(0), neg(0)) → false
greater_int(pos(0), pos(s(y))) → false
greater_int(neg(0), pos(s(y))) → false
greater_int(pos(0), neg(s(y))) → true
greater_int(neg(0), neg(s(y))) → true
greater_int(pos(s(x)), pos(0)) → true
greater_int(neg(s(x)), pos(0)) → false
greater_int(pos(s(x)), neg(0)) → true
greater_int(neg(s(x)), neg(0)) → false
greater_int(pos(s(x)), neg(s(y))) → true
greater_int(neg(s(x)), pos(s(y))) → false
greater_int(pos(s(x)), pos(s(y))) → greater_int(pos(x), pos(y))
greater_int(neg(s(x)), neg(s(y))) → greater_int(neg(x), neg(y))
div_int(pos(x), pos(s(y))) → pos(div_nat(x, s(y)))
div_int(pos(x), neg(s(y))) → neg(div_nat(x, s(y)))
div_int(neg(x), pos(s(y))) → neg(div_nat(x, s(y)))
div_int(neg(x), neg(s(y))) → pos(div_nat(x, s(y)))
div_nat(0, s(y)) → 0
div_nat(s(x), s(y)) → if(greatereq_int(pos(x), pos(y)), div_nat(minus_nat_s(x, y), s(y)), 0)
greatereq_int(pos(x), pos(0)) → true
greatereq_int(neg(0), pos(0)) → true
greatereq_int(neg(0), neg(y)) → true
greatereq_int(pos(x), neg(y)) → true
greatereq_int(pos(0), pos(s(y))) → false
greatereq_int(neg(x), pos(s(y))) → false
greatereq_int(neg(s(x)), pos(0)) → false
greatereq_int(neg(s(x)), neg(0)) → false
greatereq_int(pos(s(x)), pos(s(y))) → greatereq_int(pos(x), pos(y))
greatereq_int(neg(s(x)), neg(s(y))) → greatereq_int(neg(x), neg(y))
if(true, x, y) → x
if(false, x, y) → y
minus_nat_s(x, 0) → x
minus_nat_s(0, s(y)) → 0
minus_nat_s(s(x), s(y)) → minus_nat_s(x, y)
equal_int(pos(0), pos(0)) → true
equal_int(neg(0), pos(0)) → true
equal_int(neg(0), neg(0)) → true
equal_int(pos(0), neg(0)) → true
equal_int(pos(0), pos(s(y))) → false
equal_int(neg(0), pos(s(y))) → false
equal_int(pos(0), neg(s(y))) → false
equal_int(neg(0), neg(s(y))) → false
equal_int(pos(s(x)), pos(0)) → false
equal_int(pos(s(x)), neg(0)) → false
equal_int(neg(s(x)), pos(0)) → false
equal_int(neg(s(x)), neg(0)) → false
equal_int(pos(s(x)), neg(s(y))) → false
equal_int(neg(s(x)), pos(s(y))) → false
equal_int(pos(s(x)), pos(s(y))) → equal_int(pos(x), pos(y))
equal_int(neg(s(x)), neg(s(y))) → equal_int(neg(x), neg(y))
mod_int(pos(x), pos(y)) → pos(mod_nat(x, y))
mod_int(pos(x), neg(y)) → pos(mod_nat(x, y))
mod_int(neg(x), pos(y)) → neg(mod_nat(x, y))
mod_int(neg(x), neg(y)) → neg(mod_nat(x, y))
mod_nat(0, s(x)) → 0
mod_nat(s(x), s(y)) → if(greatereq_int(pos(x), pos(y)), mod_nat(minus_nat_s(x, y), s(y)), s(x))

The set Q consists of the following terms:

cond1(false, x0)
cond2(false, x0)
f(x0)
cond2(true, x0)
cond1(true, x0)
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
mult_int(pos(x0), pos(x1))
mult_int(pos(x0), neg(x1))
mult_int(neg(x0), pos(x1))
mult_int(neg(x0), neg(x1))
mult_nat(0, x0)
mult_nat(s(x0), 0)
mult_nat(s(x0), s(x1))
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
div_int(pos(x0), pos(s(x1)))
div_int(pos(x0), neg(s(x1)))
div_int(neg(x0), pos(s(x1)))
div_int(neg(x0), neg(s(x1)))
div_nat(0, s(x0))
div_nat(s(x0), s(x1))
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
if(true, x0, x1)
if(false, x0, x1)
minus_nat_s(x0, 0)
minus_nat_s(0, s(x0))
minus_nat_s(s(x0), s(x1))
equal_int(pos(0), pos(0))
equal_int(neg(0), pos(0))
equal_int(neg(0), neg(0))
equal_int(pos(0), neg(0))
equal_int(pos(0), pos(s(x0)))
equal_int(neg(0), pos(s(x0)))
equal_int(pos(0), neg(s(x0)))
equal_int(neg(0), neg(s(x0)))
equal_int(pos(s(x0)), pos(0))
equal_int(pos(s(x0)), neg(0))
equal_int(neg(s(x0)), pos(0))
equal_int(neg(s(x0)), neg(0))
equal_int(pos(s(x0)), neg(s(x1)))
equal_int(neg(s(x0)), pos(s(x1)))
equal_int(pos(s(x0)), pos(s(x1)))
equal_int(neg(s(x0)), neg(s(x1)))
mod_int(pos(x0), pos(x1))
mod_int(pos(x0), neg(x1))
mod_int(neg(x0), pos(x1))
mod_int(neg(x0), neg(x1))
mod_nat(0, s(x0))
mod_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.

↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
QDP
                    ↳ QReductionProof
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

GREATER_INT(pos(s(x)), pos(s(y))) → GREATER_INT(pos(x), pos(y))

R is empty.
The set Q consists of the following terms:

cond1(false, x0)
cond2(false, x0)
f(x0)
cond2(true, x0)
cond1(true, x0)
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
mult_int(pos(x0), pos(x1))
mult_int(pos(x0), neg(x1))
mult_int(neg(x0), pos(x1))
mult_int(neg(x0), neg(x1))
mult_nat(0, x0)
mult_nat(s(x0), 0)
mult_nat(s(x0), s(x1))
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
div_int(pos(x0), pos(s(x1)))
div_int(pos(x0), neg(s(x1)))
div_int(neg(x0), pos(s(x1)))
div_int(neg(x0), neg(s(x1)))
div_nat(0, s(x0))
div_nat(s(x0), s(x1))
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
if(true, x0, x1)
if(false, x0, x1)
minus_nat_s(x0, 0)
minus_nat_s(0, s(x0))
minus_nat_s(s(x0), s(x1))
equal_int(pos(0), pos(0))
equal_int(neg(0), pos(0))
equal_int(neg(0), neg(0))
equal_int(pos(0), neg(0))
equal_int(pos(0), pos(s(x0)))
equal_int(neg(0), pos(s(x0)))
equal_int(pos(0), neg(s(x0)))
equal_int(neg(0), neg(s(x0)))
equal_int(pos(s(x0)), pos(0))
equal_int(pos(s(x0)), neg(0))
equal_int(neg(s(x0)), pos(0))
equal_int(neg(s(x0)), neg(0))
equal_int(pos(s(x0)), neg(s(x1)))
equal_int(neg(s(x0)), pos(s(x1)))
equal_int(pos(s(x0)), pos(s(x1)))
equal_int(neg(s(x0)), neg(s(x1)))
mod_int(pos(x0), pos(x1))
mod_int(pos(x0), neg(x1))
mod_int(neg(x0), pos(x1))
mod_int(neg(x0), neg(x1))
mod_nat(0, s(x0))
mod_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].

cond1(false, x0)
cond2(false, x0)
f(x0)
cond2(true, x0)
cond1(true, x0)
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
mult_int(pos(x0), pos(x1))
mult_int(pos(x0), neg(x1))
mult_int(neg(x0), pos(x1))
mult_int(neg(x0), neg(x1))
mult_nat(0, x0)
mult_nat(s(x0), 0)
mult_nat(s(x0), s(x1))
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
div_int(pos(x0), pos(s(x1)))
div_int(pos(x0), neg(s(x1)))
div_int(neg(x0), pos(s(x1)))
div_int(neg(x0), neg(s(x1)))
div_nat(0, s(x0))
div_nat(s(x0), s(x1))
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
if(true, x0, x1)
if(false, x0, x1)
minus_nat_s(x0, 0)
minus_nat_s(0, s(x0))
minus_nat_s(s(x0), s(x1))
equal_int(pos(0), pos(0))
equal_int(neg(0), pos(0))
equal_int(neg(0), neg(0))
equal_int(pos(0), neg(0))
equal_int(pos(0), pos(s(x0)))
equal_int(neg(0), pos(s(x0)))
equal_int(pos(0), neg(s(x0)))
equal_int(neg(0), neg(s(x0)))
equal_int(pos(s(x0)), pos(0))
equal_int(pos(s(x0)), neg(0))
equal_int(neg(s(x0)), pos(0))
equal_int(neg(s(x0)), neg(0))
equal_int(pos(s(x0)), neg(s(x1)))
equal_int(neg(s(x0)), pos(s(x1)))
equal_int(pos(s(x0)), pos(s(x1)))
equal_int(neg(s(x0)), neg(s(x1)))
mod_int(pos(x0), pos(x1))
mod_int(pos(x0), neg(x1))
mod_int(neg(x0), pos(x1))
mod_int(neg(x0), neg(x1))
mod_nat(0, s(x0))
mod_nat(s(x0), s(x1))



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
QDP
                        ↳ UsableRulesReductionPairsProof
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

GREATER_INT(pos(s(x)), pos(s(y))) → GREATER_INT(pos(x), pos(y))

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the usable rules with reduction pair processor [LPAR04] with a polynomial ordering [POLO], all dependency pairs and the corresponding usable rules [FROCOS05] can be oriented non-strictly. All non-usable rules are removed, and those dependency pairs and usable rules that have been oriented strictly or contain non-usable symbols in their left-hand side are removed as well.

The following dependency pairs can be deleted:

GREATER_INT(pos(s(x)), pos(s(y))) → GREATER_INT(pos(x), pos(y))
No rules are removed from R.

Used ordering: POLO with Polynomial interpretation [POLO]:

POL(GREATER_INT(x1, x2)) = 2·x1 + x2   
POL(pos(x1)) = x1   
POL(s(x1)) = 2·x1   



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ UsableRulesReductionPairsProof
QDP
                            ↳ PisEmptyProof
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
P is empty.
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
QDP
                ↳ UsableRulesProof
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

MINUS_NAT(s(x), s(y)) → MINUS_NAT(x, y)

The TRS R consists of the following rules:

cond1(false, x) → x
cond2(false, x) → f(plus_int(pos(s(0)), mult_int(pos(s(s(s(0)))), x)))
f(x) → cond1(greater_int(x, pos(s(0))), x)
cond2(true, x) → f(div_int(x, pos(s(s(0)))))
cond1(true, x) → cond2(equal_int(mod_int(x, pos(s(s(0)))), pos(0)), x)
plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(neg(x), pos(y)) → minus_nat(y, x)
plus_int(neg(x), neg(y)) → neg(plus_nat(x, y))
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
mult_int(pos(x), pos(y)) → pos(mult_nat(x, y))
mult_int(pos(x), neg(y)) → neg(mult_nat(x, y))
mult_int(neg(x), pos(y)) → neg(mult_nat(x, y))
mult_int(neg(x), neg(y)) → pos(mult_nat(x, y))
mult_nat(0, y) → 0
mult_nat(s(x), 0) → 0
mult_nat(s(x), s(y)) → plus_nat(mult_nat(x, s(y)), s(y))
greater_int(pos(0), pos(0)) → false
greater_int(pos(0), neg(0)) → false
greater_int(neg(0), pos(0)) → false
greater_int(neg(0), neg(0)) → false
greater_int(pos(0), pos(s(y))) → false
greater_int(neg(0), pos(s(y))) → false
greater_int(pos(0), neg(s(y))) → true
greater_int(neg(0), neg(s(y))) → true
greater_int(pos(s(x)), pos(0)) → true
greater_int(neg(s(x)), pos(0)) → false
greater_int(pos(s(x)), neg(0)) → true
greater_int(neg(s(x)), neg(0)) → false
greater_int(pos(s(x)), neg(s(y))) → true
greater_int(neg(s(x)), pos(s(y))) → false
greater_int(pos(s(x)), pos(s(y))) → greater_int(pos(x), pos(y))
greater_int(neg(s(x)), neg(s(y))) → greater_int(neg(x), neg(y))
div_int(pos(x), pos(s(y))) → pos(div_nat(x, s(y)))
div_int(pos(x), neg(s(y))) → neg(div_nat(x, s(y)))
div_int(neg(x), pos(s(y))) → neg(div_nat(x, s(y)))
div_int(neg(x), neg(s(y))) → pos(div_nat(x, s(y)))
div_nat(0, s(y)) → 0
div_nat(s(x), s(y)) → if(greatereq_int(pos(x), pos(y)), div_nat(minus_nat_s(x, y), s(y)), 0)
greatereq_int(pos(x), pos(0)) → true
greatereq_int(neg(0), pos(0)) → true
greatereq_int(neg(0), neg(y)) → true
greatereq_int(pos(x), neg(y)) → true
greatereq_int(pos(0), pos(s(y))) → false
greatereq_int(neg(x), pos(s(y))) → false
greatereq_int(neg(s(x)), pos(0)) → false
greatereq_int(neg(s(x)), neg(0)) → false
greatereq_int(pos(s(x)), pos(s(y))) → greatereq_int(pos(x), pos(y))
greatereq_int(neg(s(x)), neg(s(y))) → greatereq_int(neg(x), neg(y))
if(true, x, y) → x
if(false, x, y) → y
minus_nat_s(x, 0) → x
minus_nat_s(0, s(y)) → 0
minus_nat_s(s(x), s(y)) → minus_nat_s(x, y)
equal_int(pos(0), pos(0)) → true
equal_int(neg(0), pos(0)) → true
equal_int(neg(0), neg(0)) → true
equal_int(pos(0), neg(0)) → true
equal_int(pos(0), pos(s(y))) → false
equal_int(neg(0), pos(s(y))) → false
equal_int(pos(0), neg(s(y))) → false
equal_int(neg(0), neg(s(y))) → false
equal_int(pos(s(x)), pos(0)) → false
equal_int(pos(s(x)), neg(0)) → false
equal_int(neg(s(x)), pos(0)) → false
equal_int(neg(s(x)), neg(0)) → false
equal_int(pos(s(x)), neg(s(y))) → false
equal_int(neg(s(x)), pos(s(y))) → false
equal_int(pos(s(x)), pos(s(y))) → equal_int(pos(x), pos(y))
equal_int(neg(s(x)), neg(s(y))) → equal_int(neg(x), neg(y))
mod_int(pos(x), pos(y)) → pos(mod_nat(x, y))
mod_int(pos(x), neg(y)) → pos(mod_nat(x, y))
mod_int(neg(x), pos(y)) → neg(mod_nat(x, y))
mod_int(neg(x), neg(y)) → neg(mod_nat(x, y))
mod_nat(0, s(x)) → 0
mod_nat(s(x), s(y)) → if(greatereq_int(pos(x), pos(y)), mod_nat(minus_nat_s(x, y), s(y)), s(x))

The set Q consists of the following terms:

cond1(false, x0)
cond2(false, x0)
f(x0)
cond2(true, x0)
cond1(true, x0)
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
mult_int(pos(x0), pos(x1))
mult_int(pos(x0), neg(x1))
mult_int(neg(x0), pos(x1))
mult_int(neg(x0), neg(x1))
mult_nat(0, x0)
mult_nat(s(x0), 0)
mult_nat(s(x0), s(x1))
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
div_int(pos(x0), pos(s(x1)))
div_int(pos(x0), neg(s(x1)))
div_int(neg(x0), pos(s(x1)))
div_int(neg(x0), neg(s(x1)))
div_nat(0, s(x0))
div_nat(s(x0), s(x1))
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
if(true, x0, x1)
if(false, x0, x1)
minus_nat_s(x0, 0)
minus_nat_s(0, s(x0))
minus_nat_s(s(x0), s(x1))
equal_int(pos(0), pos(0))
equal_int(neg(0), pos(0))
equal_int(neg(0), neg(0))
equal_int(pos(0), neg(0))
equal_int(pos(0), pos(s(x0)))
equal_int(neg(0), pos(s(x0)))
equal_int(pos(0), neg(s(x0)))
equal_int(neg(0), neg(s(x0)))
equal_int(pos(s(x0)), pos(0))
equal_int(pos(s(x0)), neg(0))
equal_int(neg(s(x0)), pos(0))
equal_int(neg(s(x0)), neg(0))
equal_int(pos(s(x0)), neg(s(x1)))
equal_int(neg(s(x0)), pos(s(x1)))
equal_int(pos(s(x0)), pos(s(x1)))
equal_int(neg(s(x0)), neg(s(x1)))
mod_int(pos(x0), pos(x1))
mod_int(pos(x0), neg(x1))
mod_int(neg(x0), pos(x1))
mod_int(neg(x0), neg(x1))
mod_nat(0, s(x0))
mod_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.

↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
QDP
                    ↳ QReductionProof
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

MINUS_NAT(s(x), s(y)) → MINUS_NAT(x, y)

R is empty.
The set Q consists of the following terms:

cond1(false, x0)
cond2(false, x0)
f(x0)
cond2(true, x0)
cond1(true, x0)
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
mult_int(pos(x0), pos(x1))
mult_int(pos(x0), neg(x1))
mult_int(neg(x0), pos(x1))
mult_int(neg(x0), neg(x1))
mult_nat(0, x0)
mult_nat(s(x0), 0)
mult_nat(s(x0), s(x1))
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
div_int(pos(x0), pos(s(x1)))
div_int(pos(x0), neg(s(x1)))
div_int(neg(x0), pos(s(x1)))
div_int(neg(x0), neg(s(x1)))
div_nat(0, s(x0))
div_nat(s(x0), s(x1))
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
if(true, x0, x1)
if(false, x0, x1)
minus_nat_s(x0, 0)
minus_nat_s(0, s(x0))
minus_nat_s(s(x0), s(x1))
equal_int(pos(0), pos(0))
equal_int(neg(0), pos(0))
equal_int(neg(0), neg(0))
equal_int(pos(0), neg(0))
equal_int(pos(0), pos(s(x0)))
equal_int(neg(0), pos(s(x0)))
equal_int(pos(0), neg(s(x0)))
equal_int(neg(0), neg(s(x0)))
equal_int(pos(s(x0)), pos(0))
equal_int(pos(s(x0)), neg(0))
equal_int(neg(s(x0)), pos(0))
equal_int(neg(s(x0)), neg(0))
equal_int(pos(s(x0)), neg(s(x1)))
equal_int(neg(s(x0)), pos(s(x1)))
equal_int(pos(s(x0)), pos(s(x1)))
equal_int(neg(s(x0)), neg(s(x1)))
mod_int(pos(x0), pos(x1))
mod_int(pos(x0), neg(x1))
mod_int(neg(x0), pos(x1))
mod_int(neg(x0), neg(x1))
mod_nat(0, s(x0))
mod_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].

cond1(false, x0)
cond2(false, x0)
f(x0)
cond2(true, x0)
cond1(true, x0)
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
mult_int(pos(x0), pos(x1))
mult_int(pos(x0), neg(x1))
mult_int(neg(x0), pos(x1))
mult_int(neg(x0), neg(x1))
mult_nat(0, x0)
mult_nat(s(x0), 0)
mult_nat(s(x0), s(x1))
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
div_int(pos(x0), pos(s(x1)))
div_int(pos(x0), neg(s(x1)))
div_int(neg(x0), pos(s(x1)))
div_int(neg(x0), neg(s(x1)))
div_nat(0, s(x0))
div_nat(s(x0), s(x1))
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
if(true, x0, x1)
if(false, x0, x1)
minus_nat_s(x0, 0)
minus_nat_s(0, s(x0))
minus_nat_s(s(x0), s(x1))
equal_int(pos(0), pos(0))
equal_int(neg(0), pos(0))
equal_int(neg(0), neg(0))
equal_int(pos(0), neg(0))
equal_int(pos(0), pos(s(x0)))
equal_int(neg(0), pos(s(x0)))
equal_int(pos(0), neg(s(x0)))
equal_int(neg(0), neg(s(x0)))
equal_int(pos(s(x0)), pos(0))
equal_int(pos(s(x0)), neg(0))
equal_int(neg(s(x0)), pos(0))
equal_int(neg(s(x0)), neg(0))
equal_int(pos(s(x0)), neg(s(x1)))
equal_int(neg(s(x0)), pos(s(x1)))
equal_int(pos(s(x0)), pos(s(x1)))
equal_int(neg(s(x0)), neg(s(x1)))
mod_int(pos(x0), pos(x1))
mod_int(pos(x0), neg(x1))
mod_int(neg(x0), pos(x1))
mod_int(neg(x0), neg(x1))
mod_nat(0, s(x0))
mod_nat(s(x0), s(x1))



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
QDP
                        ↳ QDPSizeChangeProof
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

MINUS_NAT(s(x), s(y)) → MINUS_NAT(x, y)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
QDP
                ↳ UsableRulesProof
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

PLUS_NAT(s(x), y) → PLUS_NAT(x, y)

The TRS R consists of the following rules:

cond1(false, x) → x
cond2(false, x) → f(plus_int(pos(s(0)), mult_int(pos(s(s(s(0)))), x)))
f(x) → cond1(greater_int(x, pos(s(0))), x)
cond2(true, x) → f(div_int(x, pos(s(s(0)))))
cond1(true, x) → cond2(equal_int(mod_int(x, pos(s(s(0)))), pos(0)), x)
plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(neg(x), pos(y)) → minus_nat(y, x)
plus_int(neg(x), neg(y)) → neg(plus_nat(x, y))
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
mult_int(pos(x), pos(y)) → pos(mult_nat(x, y))
mult_int(pos(x), neg(y)) → neg(mult_nat(x, y))
mult_int(neg(x), pos(y)) → neg(mult_nat(x, y))
mult_int(neg(x), neg(y)) → pos(mult_nat(x, y))
mult_nat(0, y) → 0
mult_nat(s(x), 0) → 0
mult_nat(s(x), s(y)) → plus_nat(mult_nat(x, s(y)), s(y))
greater_int(pos(0), pos(0)) → false
greater_int(pos(0), neg(0)) → false
greater_int(neg(0), pos(0)) → false
greater_int(neg(0), neg(0)) → false
greater_int(pos(0), pos(s(y))) → false
greater_int(neg(0), pos(s(y))) → false
greater_int(pos(0), neg(s(y))) → true
greater_int(neg(0), neg(s(y))) → true
greater_int(pos(s(x)), pos(0)) → true
greater_int(neg(s(x)), pos(0)) → false
greater_int(pos(s(x)), neg(0)) → true
greater_int(neg(s(x)), neg(0)) → false
greater_int(pos(s(x)), neg(s(y))) → true
greater_int(neg(s(x)), pos(s(y))) → false
greater_int(pos(s(x)), pos(s(y))) → greater_int(pos(x), pos(y))
greater_int(neg(s(x)), neg(s(y))) → greater_int(neg(x), neg(y))
div_int(pos(x), pos(s(y))) → pos(div_nat(x, s(y)))
div_int(pos(x), neg(s(y))) → neg(div_nat(x, s(y)))
div_int(neg(x), pos(s(y))) → neg(div_nat(x, s(y)))
div_int(neg(x), neg(s(y))) → pos(div_nat(x, s(y)))
div_nat(0, s(y)) → 0
div_nat(s(x), s(y)) → if(greatereq_int(pos(x), pos(y)), div_nat(minus_nat_s(x, y), s(y)), 0)
greatereq_int(pos(x), pos(0)) → true
greatereq_int(neg(0), pos(0)) → true
greatereq_int(neg(0), neg(y)) → true
greatereq_int(pos(x), neg(y)) → true
greatereq_int(pos(0), pos(s(y))) → false
greatereq_int(neg(x), pos(s(y))) → false
greatereq_int(neg(s(x)), pos(0)) → false
greatereq_int(neg(s(x)), neg(0)) → false
greatereq_int(pos(s(x)), pos(s(y))) → greatereq_int(pos(x), pos(y))
greatereq_int(neg(s(x)), neg(s(y))) → greatereq_int(neg(x), neg(y))
if(true, x, y) → x
if(false, x, y) → y
minus_nat_s(x, 0) → x
minus_nat_s(0, s(y)) → 0
minus_nat_s(s(x), s(y)) → minus_nat_s(x, y)
equal_int(pos(0), pos(0)) → true
equal_int(neg(0), pos(0)) → true
equal_int(neg(0), neg(0)) → true
equal_int(pos(0), neg(0)) → true
equal_int(pos(0), pos(s(y))) → false
equal_int(neg(0), pos(s(y))) → false
equal_int(pos(0), neg(s(y))) → false
equal_int(neg(0), neg(s(y))) → false
equal_int(pos(s(x)), pos(0)) → false
equal_int(pos(s(x)), neg(0)) → false
equal_int(neg(s(x)), pos(0)) → false
equal_int(neg(s(x)), neg(0)) → false
equal_int(pos(s(x)), neg(s(y))) → false
equal_int(neg(s(x)), pos(s(y))) → false
equal_int(pos(s(x)), pos(s(y))) → equal_int(pos(x), pos(y))
equal_int(neg(s(x)), neg(s(y))) → equal_int(neg(x), neg(y))
mod_int(pos(x), pos(y)) → pos(mod_nat(x, y))
mod_int(pos(x), neg(y)) → pos(mod_nat(x, y))
mod_int(neg(x), pos(y)) → neg(mod_nat(x, y))
mod_int(neg(x), neg(y)) → neg(mod_nat(x, y))
mod_nat(0, s(x)) → 0
mod_nat(s(x), s(y)) → if(greatereq_int(pos(x), pos(y)), mod_nat(minus_nat_s(x, y), s(y)), s(x))

The set Q consists of the following terms:

cond1(false, x0)
cond2(false, x0)
f(x0)
cond2(true, x0)
cond1(true, x0)
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
mult_int(pos(x0), pos(x1))
mult_int(pos(x0), neg(x1))
mult_int(neg(x0), pos(x1))
mult_int(neg(x0), neg(x1))
mult_nat(0, x0)
mult_nat(s(x0), 0)
mult_nat(s(x0), s(x1))
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
div_int(pos(x0), pos(s(x1)))
div_int(pos(x0), neg(s(x1)))
div_int(neg(x0), pos(s(x1)))
div_int(neg(x0), neg(s(x1)))
div_nat(0, s(x0))
div_nat(s(x0), s(x1))
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
if(true, x0, x1)
if(false, x0, x1)
minus_nat_s(x0, 0)
minus_nat_s(0, s(x0))
minus_nat_s(s(x0), s(x1))
equal_int(pos(0), pos(0))
equal_int(neg(0), pos(0))
equal_int(neg(0), neg(0))
equal_int(pos(0), neg(0))
equal_int(pos(0), pos(s(x0)))
equal_int(neg(0), pos(s(x0)))
equal_int(pos(0), neg(s(x0)))
equal_int(neg(0), neg(s(x0)))
equal_int(pos(s(x0)), pos(0))
equal_int(pos(s(x0)), neg(0))
equal_int(neg(s(x0)), pos(0))
equal_int(neg(s(x0)), neg(0))
equal_int(pos(s(x0)), neg(s(x1)))
equal_int(neg(s(x0)), pos(s(x1)))
equal_int(pos(s(x0)), pos(s(x1)))
equal_int(neg(s(x0)), neg(s(x1)))
mod_int(pos(x0), pos(x1))
mod_int(pos(x0), neg(x1))
mod_int(neg(x0), pos(x1))
mod_int(neg(x0), neg(x1))
mod_nat(0, s(x0))
mod_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.

↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
QDP
                    ↳ QReductionProof
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

PLUS_NAT(s(x), y) → PLUS_NAT(x, y)

R is empty.
The set Q consists of the following terms:

cond1(false, x0)
cond2(false, x0)
f(x0)
cond2(true, x0)
cond1(true, x0)
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
mult_int(pos(x0), pos(x1))
mult_int(pos(x0), neg(x1))
mult_int(neg(x0), pos(x1))
mult_int(neg(x0), neg(x1))
mult_nat(0, x0)
mult_nat(s(x0), 0)
mult_nat(s(x0), s(x1))
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
div_int(pos(x0), pos(s(x1)))
div_int(pos(x0), neg(s(x1)))
div_int(neg(x0), pos(s(x1)))
div_int(neg(x0), neg(s(x1)))
div_nat(0, s(x0))
div_nat(s(x0), s(x1))
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
if(true, x0, x1)
if(false, x0, x1)
minus_nat_s(x0, 0)
minus_nat_s(0, s(x0))
minus_nat_s(s(x0), s(x1))
equal_int(pos(0), pos(0))
equal_int(neg(0), pos(0))
equal_int(neg(0), neg(0))
equal_int(pos(0), neg(0))
equal_int(pos(0), pos(s(x0)))
equal_int(neg(0), pos(s(x0)))
equal_int(pos(0), neg(s(x0)))
equal_int(neg(0), neg(s(x0)))
equal_int(pos(s(x0)), pos(0))
equal_int(pos(s(x0)), neg(0))
equal_int(neg(s(x0)), pos(0))
equal_int(neg(s(x0)), neg(0))
equal_int(pos(s(x0)), neg(s(x1)))
equal_int(neg(s(x0)), pos(s(x1)))
equal_int(pos(s(x0)), pos(s(x1)))
equal_int(neg(s(x0)), neg(s(x1)))
mod_int(pos(x0), pos(x1))
mod_int(pos(x0), neg(x1))
mod_int(neg(x0), pos(x1))
mod_int(neg(x0), neg(x1))
mod_nat(0, s(x0))
mod_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].

cond1(false, x0)
cond2(false, x0)
f(x0)
cond2(true, x0)
cond1(true, x0)
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
mult_int(pos(x0), pos(x1))
mult_int(pos(x0), neg(x1))
mult_int(neg(x0), pos(x1))
mult_int(neg(x0), neg(x1))
mult_nat(0, x0)
mult_nat(s(x0), 0)
mult_nat(s(x0), s(x1))
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
div_int(pos(x0), pos(s(x1)))
div_int(pos(x0), neg(s(x1)))
div_int(neg(x0), pos(s(x1)))
div_int(neg(x0), neg(s(x1)))
div_nat(0, s(x0))
div_nat(s(x0), s(x1))
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
if(true, x0, x1)
if(false, x0, x1)
minus_nat_s(x0, 0)
minus_nat_s(0, s(x0))
minus_nat_s(s(x0), s(x1))
equal_int(pos(0), pos(0))
equal_int(neg(0), pos(0))
equal_int(neg(0), neg(0))
equal_int(pos(0), neg(0))
equal_int(pos(0), pos(s(x0)))
equal_int(neg(0), pos(s(x0)))
equal_int(pos(0), neg(s(x0)))
equal_int(neg(0), neg(s(x0)))
equal_int(pos(s(x0)), pos(0))
equal_int(pos(s(x0)), neg(0))
equal_int(neg(s(x0)), pos(0))
equal_int(neg(s(x0)), neg(0))
equal_int(pos(s(x0)), neg(s(x1)))
equal_int(neg(s(x0)), pos(s(x1)))
equal_int(pos(s(x0)), pos(s(x1)))
equal_int(neg(s(x0)), neg(s(x1)))
mod_int(pos(x0), pos(x1))
mod_int(pos(x0), neg(x1))
mod_int(neg(x0), pos(x1))
mod_int(neg(x0), neg(x1))
mod_nat(0, s(x0))
mod_nat(s(x0), s(x1))



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
QDP
                        ↳ QDPSizeChangeProof
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

PLUS_NAT(s(x), y) → PLUS_NAT(x, y)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
QDP
                ↳ UsableRulesProof
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

MULT_NAT(s(x), s(y)) → MULT_NAT(x, s(y))

The TRS R consists of the following rules:

cond1(false, x) → x
cond2(false, x) → f(plus_int(pos(s(0)), mult_int(pos(s(s(s(0)))), x)))
f(x) → cond1(greater_int(x, pos(s(0))), x)
cond2(true, x) → f(div_int(x, pos(s(s(0)))))
cond1(true, x) → cond2(equal_int(mod_int(x, pos(s(s(0)))), pos(0)), x)
plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(neg(x), pos(y)) → minus_nat(y, x)
plus_int(neg(x), neg(y)) → neg(plus_nat(x, y))
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
mult_int(pos(x), pos(y)) → pos(mult_nat(x, y))
mult_int(pos(x), neg(y)) → neg(mult_nat(x, y))
mult_int(neg(x), pos(y)) → neg(mult_nat(x, y))
mult_int(neg(x), neg(y)) → pos(mult_nat(x, y))
mult_nat(0, y) → 0
mult_nat(s(x), 0) → 0
mult_nat(s(x), s(y)) → plus_nat(mult_nat(x, s(y)), s(y))
greater_int(pos(0), pos(0)) → false
greater_int(pos(0), neg(0)) → false
greater_int(neg(0), pos(0)) → false
greater_int(neg(0), neg(0)) → false
greater_int(pos(0), pos(s(y))) → false
greater_int(neg(0), pos(s(y))) → false
greater_int(pos(0), neg(s(y))) → true
greater_int(neg(0), neg(s(y))) → true
greater_int(pos(s(x)), pos(0)) → true
greater_int(neg(s(x)), pos(0)) → false
greater_int(pos(s(x)), neg(0)) → true
greater_int(neg(s(x)), neg(0)) → false
greater_int(pos(s(x)), neg(s(y))) → true
greater_int(neg(s(x)), pos(s(y))) → false
greater_int(pos(s(x)), pos(s(y))) → greater_int(pos(x), pos(y))
greater_int(neg(s(x)), neg(s(y))) → greater_int(neg(x), neg(y))
div_int(pos(x), pos(s(y))) → pos(div_nat(x, s(y)))
div_int(pos(x), neg(s(y))) → neg(div_nat(x, s(y)))
div_int(neg(x), pos(s(y))) → neg(div_nat(x, s(y)))
div_int(neg(x), neg(s(y))) → pos(div_nat(x, s(y)))
div_nat(0, s(y)) → 0
div_nat(s(x), s(y)) → if(greatereq_int(pos(x), pos(y)), div_nat(minus_nat_s(x, y), s(y)), 0)
greatereq_int(pos(x), pos(0)) → true
greatereq_int(neg(0), pos(0)) → true
greatereq_int(neg(0), neg(y)) → true
greatereq_int(pos(x), neg(y)) → true
greatereq_int(pos(0), pos(s(y))) → false
greatereq_int(neg(x), pos(s(y))) → false
greatereq_int(neg(s(x)), pos(0)) → false
greatereq_int(neg(s(x)), neg(0)) → false
greatereq_int(pos(s(x)), pos(s(y))) → greatereq_int(pos(x), pos(y))
greatereq_int(neg(s(x)), neg(s(y))) → greatereq_int(neg(x), neg(y))
if(true, x, y) → x
if(false, x, y) → y
minus_nat_s(x, 0) → x
minus_nat_s(0, s(y)) → 0
minus_nat_s(s(x), s(y)) → minus_nat_s(x, y)
equal_int(pos(0), pos(0)) → true
equal_int(neg(0), pos(0)) → true
equal_int(neg(0), neg(0)) → true
equal_int(pos(0), neg(0)) → true
equal_int(pos(0), pos(s(y))) → false
equal_int(neg(0), pos(s(y))) → false
equal_int(pos(0), neg(s(y))) → false
equal_int(neg(0), neg(s(y))) → false
equal_int(pos(s(x)), pos(0)) → false
equal_int(pos(s(x)), neg(0)) → false
equal_int(neg(s(x)), pos(0)) → false
equal_int(neg(s(x)), neg(0)) → false
equal_int(pos(s(x)), neg(s(y))) → false
equal_int(neg(s(x)), pos(s(y))) → false
equal_int(pos(s(x)), pos(s(y))) → equal_int(pos(x), pos(y))
equal_int(neg(s(x)), neg(s(y))) → equal_int(neg(x), neg(y))
mod_int(pos(x), pos(y)) → pos(mod_nat(x, y))
mod_int(pos(x), neg(y)) → pos(mod_nat(x, y))
mod_int(neg(x), pos(y)) → neg(mod_nat(x, y))
mod_int(neg(x), neg(y)) → neg(mod_nat(x, y))
mod_nat(0, s(x)) → 0
mod_nat(s(x), s(y)) → if(greatereq_int(pos(x), pos(y)), mod_nat(minus_nat_s(x, y), s(y)), s(x))

The set Q consists of the following terms:

cond1(false, x0)
cond2(false, x0)
f(x0)
cond2(true, x0)
cond1(true, x0)
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
mult_int(pos(x0), pos(x1))
mult_int(pos(x0), neg(x1))
mult_int(neg(x0), pos(x1))
mult_int(neg(x0), neg(x1))
mult_nat(0, x0)
mult_nat(s(x0), 0)
mult_nat(s(x0), s(x1))
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
div_int(pos(x0), pos(s(x1)))
div_int(pos(x0), neg(s(x1)))
div_int(neg(x0), pos(s(x1)))
div_int(neg(x0), neg(s(x1)))
div_nat(0, s(x0))
div_nat(s(x0), s(x1))
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
if(true, x0, x1)
if(false, x0, x1)
minus_nat_s(x0, 0)
minus_nat_s(0, s(x0))
minus_nat_s(s(x0), s(x1))
equal_int(pos(0), pos(0))
equal_int(neg(0), pos(0))
equal_int(neg(0), neg(0))
equal_int(pos(0), neg(0))
equal_int(pos(0), pos(s(x0)))
equal_int(neg(0), pos(s(x0)))
equal_int(pos(0), neg(s(x0)))
equal_int(neg(0), neg(s(x0)))
equal_int(pos(s(x0)), pos(0))
equal_int(pos(s(x0)), neg(0))
equal_int(neg(s(x0)), pos(0))
equal_int(neg(s(x0)), neg(0))
equal_int(pos(s(x0)), neg(s(x1)))
equal_int(neg(s(x0)), pos(s(x1)))
equal_int(pos(s(x0)), pos(s(x1)))
equal_int(neg(s(x0)), neg(s(x1)))
mod_int(pos(x0), pos(x1))
mod_int(pos(x0), neg(x1))
mod_int(neg(x0), pos(x1))
mod_int(neg(x0), neg(x1))
mod_nat(0, s(x0))
mod_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.

↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
QDP
                    ↳ QReductionProof
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

MULT_NAT(s(x), s(y)) → MULT_NAT(x, s(y))

R is empty.
The set Q consists of the following terms:

cond1(false, x0)
cond2(false, x0)
f(x0)
cond2(true, x0)
cond1(true, x0)
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
mult_int(pos(x0), pos(x1))
mult_int(pos(x0), neg(x1))
mult_int(neg(x0), pos(x1))
mult_int(neg(x0), neg(x1))
mult_nat(0, x0)
mult_nat(s(x0), 0)
mult_nat(s(x0), s(x1))
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
div_int(pos(x0), pos(s(x1)))
div_int(pos(x0), neg(s(x1)))
div_int(neg(x0), pos(s(x1)))
div_int(neg(x0), neg(s(x1)))
div_nat(0, s(x0))
div_nat(s(x0), s(x1))
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
if(true, x0, x1)
if(false, x0, x1)
minus_nat_s(x0, 0)
minus_nat_s(0, s(x0))
minus_nat_s(s(x0), s(x1))
equal_int(pos(0), pos(0))
equal_int(neg(0), pos(0))
equal_int(neg(0), neg(0))
equal_int(pos(0), neg(0))
equal_int(pos(0), pos(s(x0)))
equal_int(neg(0), pos(s(x0)))
equal_int(pos(0), neg(s(x0)))
equal_int(neg(0), neg(s(x0)))
equal_int(pos(s(x0)), pos(0))
equal_int(pos(s(x0)), neg(0))
equal_int(neg(s(x0)), pos(0))
equal_int(neg(s(x0)), neg(0))
equal_int(pos(s(x0)), neg(s(x1)))
equal_int(neg(s(x0)), pos(s(x1)))
equal_int(pos(s(x0)), pos(s(x1)))
equal_int(neg(s(x0)), neg(s(x1)))
mod_int(pos(x0), pos(x1))
mod_int(pos(x0), neg(x1))
mod_int(neg(x0), pos(x1))
mod_int(neg(x0), neg(x1))
mod_nat(0, s(x0))
mod_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].

cond1(false, x0)
cond2(false, x0)
f(x0)
cond2(true, x0)
cond1(true, x0)
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
mult_int(pos(x0), pos(x1))
mult_int(pos(x0), neg(x1))
mult_int(neg(x0), pos(x1))
mult_int(neg(x0), neg(x1))
mult_nat(0, x0)
mult_nat(s(x0), 0)
mult_nat(s(x0), s(x1))
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
div_int(pos(x0), pos(s(x1)))
div_int(pos(x0), neg(s(x1)))
div_int(neg(x0), pos(s(x1)))
div_int(neg(x0), neg(s(x1)))
div_nat(0, s(x0))
div_nat(s(x0), s(x1))
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
if(true, x0, x1)
if(false, x0, x1)
minus_nat_s(x0, 0)
minus_nat_s(0, s(x0))
minus_nat_s(s(x0), s(x1))
equal_int(pos(0), pos(0))
equal_int(neg(0), pos(0))
equal_int(neg(0), neg(0))
equal_int(pos(0), neg(0))
equal_int(pos(0), pos(s(x0)))
equal_int(neg(0), pos(s(x0)))
equal_int(pos(0), neg(s(x0)))
equal_int(neg(0), neg(s(x0)))
equal_int(pos(s(x0)), pos(0))
equal_int(pos(s(x0)), neg(0))
equal_int(neg(s(x0)), pos(0))
equal_int(neg(s(x0)), neg(0))
equal_int(pos(s(x0)), neg(s(x1)))
equal_int(neg(s(x0)), pos(s(x1)))
equal_int(pos(s(x0)), pos(s(x1)))
equal_int(neg(s(x0)), neg(s(x1)))
mod_int(pos(x0), pos(x1))
mod_int(pos(x0), neg(x1))
mod_int(neg(x0), pos(x1))
mod_int(neg(x0), neg(x1))
mod_nat(0, s(x0))
mod_nat(s(x0), s(x1))



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
QDP
                        ↳ QDPSizeChangeProof
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

MULT_NAT(s(x), s(y)) → MULT_NAT(x, s(y))

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
QDP
                ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

F(x) → COND1(greater_int(x, pos(s(0))), x)
COND1(true, x) → COND2(equal_int(mod_int(x, pos(s(s(0)))), pos(0)), x)
COND2(false, x) → F(plus_int(pos(s(0)), mult_int(pos(s(s(s(0)))), x)))
COND2(true, x) → F(div_int(x, pos(s(s(0)))))

The TRS R consists of the following rules:

cond1(false, x) → x
cond2(false, x) → f(plus_int(pos(s(0)), mult_int(pos(s(s(s(0)))), x)))
f(x) → cond1(greater_int(x, pos(s(0))), x)
cond2(true, x) → f(div_int(x, pos(s(s(0)))))
cond1(true, x) → cond2(equal_int(mod_int(x, pos(s(s(0)))), pos(0)), x)
plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(neg(x), pos(y)) → minus_nat(y, x)
plus_int(neg(x), neg(y)) → neg(plus_nat(x, y))
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
mult_int(pos(x), pos(y)) → pos(mult_nat(x, y))
mult_int(pos(x), neg(y)) → neg(mult_nat(x, y))
mult_int(neg(x), pos(y)) → neg(mult_nat(x, y))
mult_int(neg(x), neg(y)) → pos(mult_nat(x, y))
mult_nat(0, y) → 0
mult_nat(s(x), 0) → 0
mult_nat(s(x), s(y)) → plus_nat(mult_nat(x, s(y)), s(y))
greater_int(pos(0), pos(0)) → false
greater_int(pos(0), neg(0)) → false
greater_int(neg(0), pos(0)) → false
greater_int(neg(0), neg(0)) → false
greater_int(pos(0), pos(s(y))) → false
greater_int(neg(0), pos(s(y))) → false
greater_int(pos(0), neg(s(y))) → true
greater_int(neg(0), neg(s(y))) → true
greater_int(pos(s(x)), pos(0)) → true
greater_int(neg(s(x)), pos(0)) → false
greater_int(pos(s(x)), neg(0)) → true
greater_int(neg(s(x)), neg(0)) → false
greater_int(pos(s(x)), neg(s(y))) → true
greater_int(neg(s(x)), pos(s(y))) → false
greater_int(pos(s(x)), pos(s(y))) → greater_int(pos(x), pos(y))
greater_int(neg(s(x)), neg(s(y))) → greater_int(neg(x), neg(y))
div_int(pos(x), pos(s(y))) → pos(div_nat(x, s(y)))
div_int(pos(x), neg(s(y))) → neg(div_nat(x, s(y)))
div_int(neg(x), pos(s(y))) → neg(div_nat(x, s(y)))
div_int(neg(x), neg(s(y))) → pos(div_nat(x, s(y)))
div_nat(0, s(y)) → 0
div_nat(s(x), s(y)) → if(greatereq_int(pos(x), pos(y)), div_nat(minus_nat_s(x, y), s(y)), 0)
greatereq_int(pos(x), pos(0)) → true
greatereq_int(neg(0), pos(0)) → true
greatereq_int(neg(0), neg(y)) → true
greatereq_int(pos(x), neg(y)) → true
greatereq_int(pos(0), pos(s(y))) → false
greatereq_int(neg(x), pos(s(y))) → false
greatereq_int(neg(s(x)), pos(0)) → false
greatereq_int(neg(s(x)), neg(0)) → false
greatereq_int(pos(s(x)), pos(s(y))) → greatereq_int(pos(x), pos(y))
greatereq_int(neg(s(x)), neg(s(y))) → greatereq_int(neg(x), neg(y))
if(true, x, y) → x
if(false, x, y) → y
minus_nat_s(x, 0) → x
minus_nat_s(0, s(y)) → 0
minus_nat_s(s(x), s(y)) → minus_nat_s(x, y)
equal_int(pos(0), pos(0)) → true
equal_int(neg(0), pos(0)) → true
equal_int(neg(0), neg(0)) → true
equal_int(pos(0), neg(0)) → true
equal_int(pos(0), pos(s(y))) → false
equal_int(neg(0), pos(s(y))) → false
equal_int(pos(0), neg(s(y))) → false
equal_int(neg(0), neg(s(y))) → false
equal_int(pos(s(x)), pos(0)) → false
equal_int(pos(s(x)), neg(0)) → false
equal_int(neg(s(x)), pos(0)) → false
equal_int(neg(s(x)), neg(0)) → false
equal_int(pos(s(x)), neg(s(y))) → false
equal_int(neg(s(x)), pos(s(y))) → false
equal_int(pos(s(x)), pos(s(y))) → equal_int(pos(x), pos(y))
equal_int(neg(s(x)), neg(s(y))) → equal_int(neg(x), neg(y))
mod_int(pos(x), pos(y)) → pos(mod_nat(x, y))
mod_int(pos(x), neg(y)) → pos(mod_nat(x, y))
mod_int(neg(x), pos(y)) → neg(mod_nat(x, y))
mod_int(neg(x), neg(y)) → neg(mod_nat(x, y))
mod_nat(0, s(x)) → 0
mod_nat(s(x), s(y)) → if(greatereq_int(pos(x), pos(y)), mod_nat(minus_nat_s(x, y), s(y)), s(x))

The set Q consists of the following terms:

cond1(false, x0)
cond2(false, x0)
f(x0)
cond2(true, x0)
cond1(true, x0)
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
mult_int(pos(x0), pos(x1))
mult_int(pos(x0), neg(x1))
mult_int(neg(x0), pos(x1))
mult_int(neg(x0), neg(x1))
mult_nat(0, x0)
mult_nat(s(x0), 0)
mult_nat(s(x0), s(x1))
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
div_int(pos(x0), pos(s(x1)))
div_int(pos(x0), neg(s(x1)))
div_int(neg(x0), pos(s(x1)))
div_int(neg(x0), neg(s(x1)))
div_nat(0, s(x0))
div_nat(s(x0), s(x1))
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
if(true, x0, x1)
if(false, x0, x1)
minus_nat_s(x0, 0)
minus_nat_s(0, s(x0))
minus_nat_s(s(x0), s(x1))
equal_int(pos(0), pos(0))
equal_int(neg(0), pos(0))
equal_int(neg(0), neg(0))
equal_int(pos(0), neg(0))
equal_int(pos(0), pos(s(x0)))
equal_int(neg(0), pos(s(x0)))
equal_int(pos(0), neg(s(x0)))
equal_int(neg(0), neg(s(x0)))
equal_int(pos(s(x0)), pos(0))
equal_int(pos(s(x0)), neg(0))
equal_int(neg(s(x0)), pos(0))
equal_int(neg(s(x0)), neg(0))
equal_int(pos(s(x0)), neg(s(x1)))
equal_int(neg(s(x0)), pos(s(x1)))
equal_int(pos(s(x0)), pos(s(x1)))
equal_int(neg(s(x0)), neg(s(x1)))
mod_int(pos(x0), pos(x1))
mod_int(pos(x0), neg(x1))
mod_int(neg(x0), pos(x1))
mod_int(neg(x0), neg(x1))
mod_nat(0, s(x0))
mod_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.

↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
QDP
                    ↳ QReductionProof

Q DP problem:
The TRS P consists of the following rules:

F(x) → COND1(greater_int(x, pos(s(0))), x)
COND1(true, x) → COND2(equal_int(mod_int(x, pos(s(s(0)))), pos(0)), x)
COND2(false, x) → F(plus_int(pos(s(0)), mult_int(pos(s(s(s(0)))), x)))
COND2(true, x) → F(div_int(x, pos(s(s(0)))))

The TRS R consists of the following rules:

mult_int(pos(x), pos(y)) → pos(mult_nat(x, y))
mult_int(pos(x), neg(y)) → neg(mult_nat(x, y))
plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
mult_nat(0, y) → 0
mult_nat(s(x), 0) → 0
mult_nat(s(x), s(y)) → plus_nat(mult_nat(x, s(y)), s(y))
greater_int(pos(0), pos(s(y))) → false
greater_int(neg(0), pos(s(y))) → false
greater_int(neg(s(x)), pos(s(y))) → false
greater_int(pos(s(x)), pos(s(y))) → greater_int(pos(x), pos(y))
greater_int(pos(0), pos(0)) → false
greater_int(pos(s(x)), pos(0)) → true
div_int(pos(x), pos(s(y))) → pos(div_nat(x, s(y)))
div_int(neg(x), pos(s(y))) → neg(div_nat(x, s(y)))
div_nat(0, s(y)) → 0
div_nat(s(x), s(y)) → if(greatereq_int(pos(x), pos(y)), div_nat(minus_nat_s(x, y), s(y)), 0)
greatereq_int(pos(x), pos(0)) → true
greatereq_int(pos(0), pos(s(y))) → false
greatereq_int(pos(s(x)), pos(s(y))) → greatereq_int(pos(x), pos(y))
minus_nat_s(x, 0) → x
minus_nat_s(0, s(y)) → 0
minus_nat_s(s(x), s(y)) → minus_nat_s(x, y)
if(true, x, y) → x
if(false, x, y) → y
mod_int(pos(x), pos(y)) → pos(mod_nat(x, y))
mod_int(neg(x), pos(y)) → neg(mod_nat(x, y))
equal_int(pos(0), pos(0)) → true
equal_int(neg(0), pos(0)) → true
equal_int(pos(s(x)), pos(0)) → false
equal_int(neg(s(x)), pos(0)) → false
mod_nat(0, s(x)) → 0
mod_nat(s(x), s(y)) → if(greatereq_int(pos(x), pos(y)), mod_nat(minus_nat_s(x, y), s(y)), s(x))

The set Q consists of the following terms:

cond1(false, x0)
cond2(false, x0)
f(x0)
cond2(true, x0)
cond1(true, x0)
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
mult_int(pos(x0), pos(x1))
mult_int(pos(x0), neg(x1))
mult_int(neg(x0), pos(x1))
mult_int(neg(x0), neg(x1))
mult_nat(0, x0)
mult_nat(s(x0), 0)
mult_nat(s(x0), s(x1))
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
div_int(pos(x0), pos(s(x1)))
div_int(pos(x0), neg(s(x1)))
div_int(neg(x0), pos(s(x1)))
div_int(neg(x0), neg(s(x1)))
div_nat(0, s(x0))
div_nat(s(x0), s(x1))
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
if(true, x0, x1)
if(false, x0, x1)
minus_nat_s(x0, 0)
minus_nat_s(0, s(x0))
minus_nat_s(s(x0), s(x1))
equal_int(pos(0), pos(0))
equal_int(neg(0), pos(0))
equal_int(neg(0), neg(0))
equal_int(pos(0), neg(0))
equal_int(pos(0), pos(s(x0)))
equal_int(neg(0), pos(s(x0)))
equal_int(pos(0), neg(s(x0)))
equal_int(neg(0), neg(s(x0)))
equal_int(pos(s(x0)), pos(0))
equal_int(pos(s(x0)), neg(0))
equal_int(neg(s(x0)), pos(0))
equal_int(neg(s(x0)), neg(0))
equal_int(pos(s(x0)), neg(s(x1)))
equal_int(neg(s(x0)), pos(s(x1)))
equal_int(pos(s(x0)), pos(s(x1)))
equal_int(neg(s(x0)), neg(s(x1)))
mod_int(pos(x0), pos(x1))
mod_int(pos(x0), neg(x1))
mod_int(neg(x0), pos(x1))
mod_int(neg(x0), neg(x1))
mod_nat(0, s(x0))
mod_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].

cond1(false, x0)
cond2(false, x0)
f(x0)
cond2(true, x0)
cond1(true, x0)



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
QDP
                        ↳ QDPOrderProof

Q DP problem:
The TRS P consists of the following rules:

F(x) → COND1(greater_int(x, pos(s(0))), x)
COND1(true, x) → COND2(equal_int(mod_int(x, pos(s(s(0)))), pos(0)), x)
COND2(false, x) → F(plus_int(pos(s(0)), mult_int(pos(s(s(s(0)))), x)))
COND2(true, x) → F(div_int(x, pos(s(s(0)))))

The TRS R consists of the following rules:

mult_int(pos(x), pos(y)) → pos(mult_nat(x, y))
mult_int(pos(x), neg(y)) → neg(mult_nat(x, y))
plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
mult_nat(0, y) → 0
mult_nat(s(x), 0) → 0
mult_nat(s(x), s(y)) → plus_nat(mult_nat(x, s(y)), s(y))
greater_int(pos(0), pos(s(y))) → false
greater_int(neg(0), pos(s(y))) → false
greater_int(neg(s(x)), pos(s(y))) → false
greater_int(pos(s(x)), pos(s(y))) → greater_int(pos(x), pos(y))
greater_int(pos(0), pos(0)) → false
greater_int(pos(s(x)), pos(0)) → true
div_int(pos(x), pos(s(y))) → pos(div_nat(x, s(y)))
div_int(neg(x), pos(s(y))) → neg(div_nat(x, s(y)))
div_nat(0, s(y)) → 0
div_nat(s(x), s(y)) → if(greatereq_int(pos(x), pos(y)), div_nat(minus_nat_s(x, y), s(y)), 0)
greatereq_int(pos(x), pos(0)) → true
greatereq_int(pos(0), pos(s(y))) → false
greatereq_int(pos(s(x)), pos(s(y))) → greatereq_int(pos(x), pos(y))
minus_nat_s(x, 0) → x
minus_nat_s(0, s(y)) → 0
minus_nat_s(s(x), s(y)) → minus_nat_s(x, y)
if(true, x, y) → x
if(false, x, y) → y
mod_int(pos(x), pos(y)) → pos(mod_nat(x, y))
mod_int(neg(x), pos(y)) → neg(mod_nat(x, y))
equal_int(pos(0), pos(0)) → true
equal_int(neg(0), pos(0)) → true
equal_int(pos(s(x)), pos(0)) → false
equal_int(neg(s(x)), pos(0)) → false
mod_nat(0, s(x)) → 0
mod_nat(s(x), s(y)) → if(greatereq_int(pos(x), pos(y)), mod_nat(minus_nat_s(x, y), s(y)), s(x))

The set Q consists of the following terms:

plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
mult_int(pos(x0), pos(x1))
mult_int(pos(x0), neg(x1))
mult_int(neg(x0), pos(x1))
mult_int(neg(x0), neg(x1))
mult_nat(0, x0)
mult_nat(s(x0), 0)
mult_nat(s(x0), s(x1))
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
div_int(pos(x0), pos(s(x1)))
div_int(pos(x0), neg(s(x1)))
div_int(neg(x0), pos(s(x1)))
div_int(neg(x0), neg(s(x1)))
div_nat(0, s(x0))
div_nat(s(x0), s(x1))
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
if(true, x0, x1)
if(false, x0, x1)
minus_nat_s(x0, 0)
minus_nat_s(0, s(x0))
minus_nat_s(s(x0), s(x1))
equal_int(pos(0), pos(0))
equal_int(neg(0), pos(0))
equal_int(neg(0), neg(0))
equal_int(pos(0), neg(0))
equal_int(pos(0), pos(s(x0)))
equal_int(neg(0), pos(s(x0)))
equal_int(pos(0), neg(s(x0)))
equal_int(neg(0), neg(s(x0)))
equal_int(pos(s(x0)), pos(0))
equal_int(pos(s(x0)), neg(0))
equal_int(neg(s(x0)), pos(0))
equal_int(neg(s(x0)), neg(0))
equal_int(pos(s(x0)), neg(s(x1)))
equal_int(neg(s(x0)), pos(s(x1)))
equal_int(pos(s(x0)), pos(s(x1)))
equal_int(neg(s(x0)), neg(s(x1)))
mod_int(pos(x0), pos(x1))
mod_int(pos(x0), neg(x1))
mod_int(neg(x0), pos(x1))
mod_int(neg(x0), neg(x1))
mod_nat(0, s(x0))
mod_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


COND2(true, x) → F(div_int(x, pos(s(s(0)))))
The remaining pairs can at least be oriented weakly.

F(x) → COND1(greater_int(x, pos(s(0))), x)
COND1(true, x) → COND2(equal_int(mod_int(x, pos(s(s(0)))), pos(0)), x)
COND2(false, x) → F(plus_int(pos(s(0)), mult_int(pos(s(s(s(0)))), x)))
Used ordering: Matrix interpretation [MATRO] with arctic natural numbers [ARCTIC]:

POL(F(x1)) =
/0A0A\
\-I-I/
·x1 +
/0A\
\-I/

POL(COND1(x1, x2)) =
/0A0A\
\-I-I/
·x1 +
/-I\
\-I/
+
/0A0A\
\-I-I/
·x2

POL(greater_int(x1, x2)) =
/0A-I\
\0A0A/
·x1 +
/0A\
\0A/
+
/-I0A\
\-I0A/
·x2

POL(pos(x1)) =
/0A1A\
\0A0A/
·x1 +
/-I\
\-I/

POL(s(x1)) =
/0A1A\
\-I0A/
·x1 +
/0A\
\0A/

POL(0) =
/0A\
\-I/

POL(true) =
/0A\
\1A/

POL(COND2(x1, x2)) =
/-I0A\
\-I-I/
·x1 +
/1A\
\-I/
+
/0A0A\
\-I-I/
·x2

POL(equal_int(x1, x2)) =
/0A0A\
\-I0A/
·x1 +
/0A\
\0A/
+
/-I-I\
\1A-I/
·x2

POL(mod_int(x1, x2)) =
/0A1A\
\-I0A/
·x1 +
/0A\
\-I/
+
/-I-I\
\-I-I/
·x2

POL(false) =
/0A\
\0A/

POL(plus_int(x1, x2)) =
/-I0A\
\0A0A/
·x1 +
/1A\
\1A/
+
/0A0A\
\0A0A/
·x2

POL(mult_int(x1, x2)) =
/0A0A\
\0A0A/
·x1 +
/1A\
\0A/
+
/0A0A\
\0A0A/
·x2

POL(div_int(x1, x2)) =
/-I-I\
\-I-I/
·x1 +
/0A\
\0A/
+
/-I-I\
\-I-I/
·x2

POL(mod_nat(x1, x2)) =
/0A-I\
\0A0A/
·x1 +
/-I\
\-I/
+
/-I-I\
\-I-I/
·x2

POL(if(x1, x2, x3)) =
/-I-I\
\-I-I/
·x1 +
/0A\
\-I/
+
/0A-I\
\-I0A/
·x2 +
/0A-I\
\-I0A/
·x3

POL(greatereq_int(x1, x2)) =
/-I-I\
\-I-I/
·x1 +
/1A\
\1A/
+
/-I-I\
\-I-I/
·x2

POL(minus_nat_s(x1, x2)) =
/0A-I\
\0A1A/
·x1 +
/-I\
\-I/
+
/-I-I\
\-I-I/
·x2

POL(neg(x1)) =
/0A0A\
\0A-I/
·x1 +
/0A\
\0A/

POL(div_nat(x1, x2)) =
/-I-I\
\-I-I/
·x1 +
/0A\
\-I/
+
/-I-I\
\-I-I/
·x2

POL(plus_nat(x1, x2)) =
/-I0A\
\-I-I/
·x1 +
/1A\
\0A/
+
/0A1A\
\-I0A/
·x2

POL(minus_nat(x1, x2)) =
/0A-I\
\0A0A/
·x1 +
/1A\
\0A/
+
/0A0A\
\0A0A/
·x2

POL(mult_nat(x1, x2)) =
/0A1A\
\-I0A/
·x1 +
/-I\
\0A/
+
/0A0A\
\-I0A/
·x2

The following usable rules [FROCOS05] were oriented:

mod_nat(s(x), s(y)) → if(greatereq_int(pos(x), pos(y)), mod_nat(minus_nat_s(x, y), s(y)), s(x))
mod_nat(0, s(x)) → 0
equal_int(neg(s(x)), pos(0)) → false
equal_int(pos(s(x)), pos(0)) → false
greatereq_int(pos(s(x)), pos(s(y))) → greatereq_int(pos(x), pos(y))
minus_nat_s(x, 0) → x
greatereq_int(pos(x), pos(0)) → true
greatereq_int(pos(0), pos(s(y))) → false
div_nat(0, s(y)) → 0
div_nat(s(x), s(y)) → if(greatereq_int(pos(x), pos(y)), div_nat(minus_nat_s(x, y), s(y)), 0)
div_int(pos(x), pos(s(y))) → pos(div_nat(x, s(y)))
div_int(neg(x), pos(s(y))) → neg(div_nat(x, s(y)))
equal_int(pos(0), pos(0)) → true
equal_int(neg(0), pos(0)) → true
mod_int(pos(x), pos(y)) → pos(mod_nat(x, y))
mod_int(neg(x), pos(y)) → neg(mod_nat(x, y))
if(true, x, y) → x
if(false, x, y) → y
minus_nat_s(0, s(y)) → 0
minus_nat_s(s(x), s(y)) → minus_nat_s(x, y)
plus_nat(0, x) → x
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(0, s(y)) → neg(s(y))
mult_nat(0, y) → 0
minus_nat(s(x), s(y)) → minus_nat(x, y)
mult_nat(s(x), s(y)) → plus_nat(mult_nat(x, s(y)), s(y))
mult_nat(s(x), 0) → 0
greater_int(neg(0), pos(s(y))) → false
greater_int(pos(0), pos(s(y))) → false
greater_int(pos(s(x)), pos(s(y))) → greater_int(pos(x), pos(y))
greater_int(neg(s(x)), pos(s(y))) → false
greater_int(pos(s(x)), pos(0)) → true
greater_int(pos(0), pos(0)) → false
mult_int(pos(x), pos(y)) → pos(mult_nat(x, y))
mult_int(pos(x), neg(y)) → neg(mult_nat(x, y))
plus_int(pos(x), neg(y)) → minus_nat(x, y)



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ QDPOrderProof
QDP
                            ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

F(x) → COND1(greater_int(x, pos(s(0))), x)
COND1(true, x) → COND2(equal_int(mod_int(x, pos(s(s(0)))), pos(0)), x)
COND2(false, x) → F(plus_int(pos(s(0)), mult_int(pos(s(s(s(0)))), x)))

The TRS R consists of the following rules:

mult_int(pos(x), pos(y)) → pos(mult_nat(x, y))
mult_int(pos(x), neg(y)) → neg(mult_nat(x, y))
plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
mult_nat(0, y) → 0
mult_nat(s(x), 0) → 0
mult_nat(s(x), s(y)) → plus_nat(mult_nat(x, s(y)), s(y))
greater_int(pos(0), pos(s(y))) → false
greater_int(neg(0), pos(s(y))) → false
greater_int(neg(s(x)), pos(s(y))) → false
greater_int(pos(s(x)), pos(s(y))) → greater_int(pos(x), pos(y))
greater_int(pos(0), pos(0)) → false
greater_int(pos(s(x)), pos(0)) → true
div_int(pos(x), pos(s(y))) → pos(div_nat(x, s(y)))
div_int(neg(x), pos(s(y))) → neg(div_nat(x, s(y)))
div_nat(0, s(y)) → 0
div_nat(s(x), s(y)) → if(greatereq_int(pos(x), pos(y)), div_nat(minus_nat_s(x, y), s(y)), 0)
greatereq_int(pos(x), pos(0)) → true
greatereq_int(pos(0), pos(s(y))) → false
greatereq_int(pos(s(x)), pos(s(y))) → greatereq_int(pos(x), pos(y))
minus_nat_s(x, 0) → x
minus_nat_s(0, s(y)) → 0
minus_nat_s(s(x), s(y)) → minus_nat_s(x, y)
if(true, x, y) → x
if(false, x, y) → y
mod_int(pos(x), pos(y)) → pos(mod_nat(x, y))
mod_int(neg(x), pos(y)) → neg(mod_nat(x, y))
equal_int(pos(0), pos(0)) → true
equal_int(neg(0), pos(0)) → true
equal_int(pos(s(x)), pos(0)) → false
equal_int(neg(s(x)), pos(0)) → false
mod_nat(0, s(x)) → 0
mod_nat(s(x), s(y)) → if(greatereq_int(pos(x), pos(y)), mod_nat(minus_nat_s(x, y), s(y)), s(x))

The set Q consists of the following terms:

plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
mult_int(pos(x0), pos(x1))
mult_int(pos(x0), neg(x1))
mult_int(neg(x0), pos(x1))
mult_int(neg(x0), neg(x1))
mult_nat(0, x0)
mult_nat(s(x0), 0)
mult_nat(s(x0), s(x1))
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
div_int(pos(x0), pos(s(x1)))
div_int(pos(x0), neg(s(x1)))
div_int(neg(x0), pos(s(x1)))
div_int(neg(x0), neg(s(x1)))
div_nat(0, s(x0))
div_nat(s(x0), s(x1))
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
if(true, x0, x1)
if(false, x0, x1)
minus_nat_s(x0, 0)
minus_nat_s(0, s(x0))
minus_nat_s(s(x0), s(x1))
equal_int(pos(0), pos(0))
equal_int(neg(0), pos(0))
equal_int(neg(0), neg(0))
equal_int(pos(0), neg(0))
equal_int(pos(0), pos(s(x0)))
equal_int(neg(0), pos(s(x0)))
equal_int(pos(0), neg(s(x0)))
equal_int(neg(0), neg(s(x0)))
equal_int(pos(s(x0)), pos(0))
equal_int(pos(s(x0)), neg(0))
equal_int(neg(s(x0)), pos(0))
equal_int(neg(s(x0)), neg(0))
equal_int(pos(s(x0)), neg(s(x1)))
equal_int(neg(s(x0)), pos(s(x1)))
equal_int(pos(s(x0)), pos(s(x1)))
equal_int(neg(s(x0)), neg(s(x1)))
mod_int(pos(x0), pos(x1))
mod_int(pos(x0), neg(x1))
mod_int(neg(x0), pos(x1))
mod_int(neg(x0), neg(x1))
mod_nat(0, s(x0))
mod_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.

↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ QDPOrderProof
                          ↳ QDP
                            ↳ UsableRulesProof
QDP
                                ↳ QReductionProof

Q DP problem:
The TRS P consists of the following rules:

F(x) → COND1(greater_int(x, pos(s(0))), x)
COND1(true, x) → COND2(equal_int(mod_int(x, pos(s(s(0)))), pos(0)), x)
COND2(false, x) → F(plus_int(pos(s(0)), mult_int(pos(s(s(s(0)))), x)))

The TRS R consists of the following rules:

greater_int(pos(0), pos(s(y))) → false
greater_int(neg(0), pos(s(y))) → false
greater_int(neg(s(x)), pos(s(y))) → false
greater_int(pos(s(x)), pos(s(y))) → greater_int(pos(x), pos(y))
greater_int(pos(0), pos(0)) → false
greater_int(pos(s(x)), pos(0)) → true
mod_int(pos(x), pos(y)) → pos(mod_nat(x, y))
mod_int(neg(x), pos(y)) → neg(mod_nat(x, y))
equal_int(pos(0), pos(0)) → true
equal_int(neg(0), pos(0)) → true
equal_int(pos(s(x)), pos(0)) → false
equal_int(neg(s(x)), pos(0)) → false
mod_nat(0, s(x)) → 0
mod_nat(s(x), s(y)) → if(greatereq_int(pos(x), pos(y)), mod_nat(minus_nat_s(x, y), s(y)), s(x))
greatereq_int(pos(x), pos(0)) → true
greatereq_int(pos(0), pos(s(y))) → false
greatereq_int(pos(s(x)), pos(s(y))) → greatereq_int(pos(x), pos(y))
minus_nat_s(x, 0) → x
minus_nat_s(0, s(y)) → 0
minus_nat_s(s(x), s(y)) → minus_nat_s(x, y)
if(true, x, y) → x
if(false, x, y) → y
mult_int(pos(x), pos(y)) → pos(mult_nat(x, y))
mult_int(pos(x), neg(y)) → neg(mult_nat(x, y))
plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
mult_nat(0, y) → 0
mult_nat(s(x), 0) → 0
mult_nat(s(x), s(y)) → plus_nat(mult_nat(x, s(y)), s(y))

The set Q consists of the following terms:

plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
mult_int(pos(x0), pos(x1))
mult_int(pos(x0), neg(x1))
mult_int(neg(x0), pos(x1))
mult_int(neg(x0), neg(x1))
mult_nat(0, x0)
mult_nat(s(x0), 0)
mult_nat(s(x0), s(x1))
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
div_int(pos(x0), pos(s(x1)))
div_int(pos(x0), neg(s(x1)))
div_int(neg(x0), pos(s(x1)))
div_int(neg(x0), neg(s(x1)))
div_nat(0, s(x0))
div_nat(s(x0), s(x1))
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
if(true, x0, x1)
if(false, x0, x1)
minus_nat_s(x0, 0)
minus_nat_s(0, s(x0))
minus_nat_s(s(x0), s(x1))
equal_int(pos(0), pos(0))
equal_int(neg(0), pos(0))
equal_int(neg(0), neg(0))
equal_int(pos(0), neg(0))
equal_int(pos(0), pos(s(x0)))
equal_int(neg(0), pos(s(x0)))
equal_int(pos(0), neg(s(x0)))
equal_int(neg(0), neg(s(x0)))
equal_int(pos(s(x0)), pos(0))
equal_int(pos(s(x0)), neg(0))
equal_int(neg(s(x0)), pos(0))
equal_int(neg(s(x0)), neg(0))
equal_int(pos(s(x0)), neg(s(x1)))
equal_int(neg(s(x0)), pos(s(x1)))
equal_int(pos(s(x0)), pos(s(x1)))
equal_int(neg(s(x0)), neg(s(x1)))
mod_int(pos(x0), pos(x1))
mod_int(pos(x0), neg(x1))
mod_int(neg(x0), pos(x1))
mod_int(neg(x0), neg(x1))
mod_nat(0, s(x0))
mod_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].

div_int(pos(x0), pos(s(x1)))
div_int(pos(x0), neg(s(x1)))
div_int(neg(x0), pos(s(x1)))
div_int(neg(x0), neg(s(x1)))
div_nat(0, s(x0))
div_nat(s(x0), s(x1))



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ QDPOrderProof
                          ↳ QDP
                            ↳ UsableRulesProof
                              ↳ QDP
                                ↳ QReductionProof
QDP
                                    ↳ RemovalProof
                                    ↳ RemovalProof
                                    ↳ Narrowing

Q DP problem:
The TRS P consists of the following rules:

F(x) → COND1(greater_int(x, pos(s(0))), x)
COND1(true, x) → COND2(equal_int(mod_int(x, pos(s(s(0)))), pos(0)), x)
COND2(false, x) → F(plus_int(pos(s(0)), mult_int(pos(s(s(s(0)))), x)))

The TRS R consists of the following rules:

greater_int(pos(0), pos(s(y))) → false
greater_int(neg(0), pos(s(y))) → false
greater_int(neg(s(x)), pos(s(y))) → false
greater_int(pos(s(x)), pos(s(y))) → greater_int(pos(x), pos(y))
greater_int(pos(0), pos(0)) → false
greater_int(pos(s(x)), pos(0)) → true
mod_int(pos(x), pos(y)) → pos(mod_nat(x, y))
mod_int(neg(x), pos(y)) → neg(mod_nat(x, y))
equal_int(pos(0), pos(0)) → true
equal_int(neg(0), pos(0)) → true
equal_int(pos(s(x)), pos(0)) → false
equal_int(neg(s(x)), pos(0)) → false
mod_nat(0, s(x)) → 0
mod_nat(s(x), s(y)) → if(greatereq_int(pos(x), pos(y)), mod_nat(minus_nat_s(x, y), s(y)), s(x))
greatereq_int(pos(x), pos(0)) → true
greatereq_int(pos(0), pos(s(y))) → false
greatereq_int(pos(s(x)), pos(s(y))) → greatereq_int(pos(x), pos(y))
minus_nat_s(x, 0) → x
minus_nat_s(0, s(y)) → 0
minus_nat_s(s(x), s(y)) → minus_nat_s(x, y)
if(true, x, y) → x
if(false, x, y) → y
mult_int(pos(x), pos(y)) → pos(mult_nat(x, y))
mult_int(pos(x), neg(y)) → neg(mult_nat(x, y))
plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
mult_nat(0, y) → 0
mult_nat(s(x), 0) → 0
mult_nat(s(x), s(y)) → plus_nat(mult_nat(x, s(y)), s(y))

The set Q consists of the following terms:

plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
mult_int(pos(x0), pos(x1))
mult_int(pos(x0), neg(x1))
mult_int(neg(x0), pos(x1))
mult_int(neg(x0), neg(x1))
mult_nat(0, x0)
mult_nat(s(x0), 0)
mult_nat(s(x0), s(x1))
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
if(true, x0, x1)
if(false, x0, x1)
minus_nat_s(x0, 0)
minus_nat_s(0, s(x0))
minus_nat_s(s(x0), s(x1))
equal_int(pos(0), pos(0))
equal_int(neg(0), pos(0))
equal_int(neg(0), neg(0))
equal_int(pos(0), neg(0))
equal_int(pos(0), pos(s(x0)))
equal_int(neg(0), pos(s(x0)))
equal_int(pos(0), neg(s(x0)))
equal_int(neg(0), neg(s(x0)))
equal_int(pos(s(x0)), pos(0))
equal_int(pos(s(x0)), neg(0))
equal_int(neg(s(x0)), pos(0))
equal_int(neg(s(x0)), neg(0))
equal_int(pos(s(x0)), neg(s(x1)))
equal_int(neg(s(x0)), pos(s(x1)))
equal_int(pos(s(x0)), pos(s(x1)))
equal_int(neg(s(x0)), neg(s(x1)))
mod_int(pos(x0), pos(x1))
mod_int(pos(x0), neg(x1))
mod_int(neg(x0), pos(x1))
mod_int(neg(x0), neg(x1))
mod_nat(0, s(x0))
mod_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
In the following pairs the term without variables pos(s(s(s(0)))) is replaced by the fresh variable x_removed.
Pair: COND2(false, x) → F(plus_int(pos(s(0)), mult_int(pos(s(s(s(0)))), x)))
Positions in right side of the pair: The new variable was added to all pairs as a new argument[CONREM].

↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ QDPOrderProof
                          ↳ QDP
                            ↳ UsableRulesProof
                              ↳ QDP
                                ↳ QReductionProof
                                  ↳ QDP
                                    ↳ RemovalProof
QDP
                                    ↳ RemovalProof
                                    ↳ Narrowing

Q DP problem:
The TRS P consists of the following rules:

F(x, x_removed) → COND1(greater_int(x, pos(s(0))), x, x_removed)
COND1(true, x, x_removed) → COND2(equal_int(mod_int(x, pos(s(s(0)))), pos(0)), x, x_removed)
COND2(false, x, x_removed) → F(plus_int(pos(s(0)), mult_int(x_removed, x)), x_removed)

The TRS R consists of the following rules:

greater_int(pos(0), pos(s(y))) → false
greater_int(neg(0), pos(s(y))) → false
greater_int(neg(s(x)), pos(s(y))) → false
greater_int(pos(s(x)), pos(s(y))) → greater_int(pos(x), pos(y))
greater_int(pos(0), pos(0)) → false
greater_int(pos(s(x)), pos(0)) → true
mod_int(pos(x), pos(y)) → pos(mod_nat(x, y))
mod_int(neg(x), pos(y)) → neg(mod_nat(x, y))
equal_int(pos(0), pos(0)) → true
equal_int(neg(0), pos(0)) → true
equal_int(pos(s(x)), pos(0)) → false
equal_int(neg(s(x)), pos(0)) → false
mod_nat(0, s(x)) → 0
mod_nat(s(x), s(y)) → if(greatereq_int(pos(x), pos(y)), mod_nat(minus_nat_s(x, y), s(y)), s(x))
greatereq_int(pos(x), pos(0)) → true
greatereq_int(pos(0), pos(s(y))) → false
greatereq_int(pos(s(x)), pos(s(y))) → greatereq_int(pos(x), pos(y))
minus_nat_s(x, 0) → x
minus_nat_s(0, s(y)) → 0
minus_nat_s(s(x), s(y)) → minus_nat_s(x, y)
if(true, x, y) → x
if(false, x, y) → y
mult_int(pos(x), pos(y)) → pos(mult_nat(x, y))
mult_int(pos(x), neg(y)) → neg(mult_nat(x, y))
plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
mult_nat(0, y) → 0
mult_nat(s(x), 0) → 0
mult_nat(s(x), s(y)) → plus_nat(mult_nat(x, s(y)), s(y))

The set Q consists of the following terms:

plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
mult_int(pos(x0), pos(x1))
mult_int(pos(x0), neg(x1))
mult_int(neg(x0), pos(x1))
mult_int(neg(x0), neg(x1))
mult_nat(0, x0)
mult_nat(s(x0), 0)
mult_nat(s(x0), s(x1))
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
if(true, x0, x1)
if(false, x0, x1)
minus_nat_s(x0, 0)
minus_nat_s(0, s(x0))
minus_nat_s(s(x0), s(x1))
equal_int(pos(0), pos(0))
equal_int(neg(0), pos(0))
equal_int(neg(0), neg(0))
equal_int(pos(0), neg(0))
equal_int(pos(0), pos(s(x0)))
equal_int(neg(0), pos(s(x0)))
equal_int(pos(0), neg(s(x0)))
equal_int(neg(0), neg(s(x0)))
equal_int(pos(s(x0)), pos(0))
equal_int(pos(s(x0)), neg(0))
equal_int(neg(s(x0)), pos(0))
equal_int(neg(s(x0)), neg(0))
equal_int(pos(s(x0)), neg(s(x1)))
equal_int(neg(s(x0)), pos(s(x1)))
equal_int(pos(s(x0)), pos(s(x1)))
equal_int(neg(s(x0)), neg(s(x1)))
mod_int(pos(x0), pos(x1))
mod_int(pos(x0), neg(x1))
mod_int(neg(x0), pos(x1))
mod_int(neg(x0), neg(x1))
mod_nat(0, s(x0))
mod_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
In the following pairs the term without variables pos(s(s(s(0)))) is replaced by the fresh variable x_removed.
Pair: COND2(false, x) → F(plus_int(pos(s(0)), mult_int(pos(s(s(s(0)))), x)))
Positions in right side of the pair: The new variable was added to all pairs as a new argument[CONREM].

↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ QDPOrderProof
                          ↳ QDP
                            ↳ UsableRulesProof
                              ↳ QDP
                                ↳ QReductionProof
                                  ↳ QDP
                                    ↳ RemovalProof
                                    ↳ RemovalProof
QDP
                                    ↳ Narrowing

Q DP problem:
The TRS P consists of the following rules:

F(x, x_removed) → COND1(greater_int(x, pos(s(0))), x, x_removed)
COND1(true, x, x_removed) → COND2(equal_int(mod_int(x, pos(s(s(0)))), pos(0)), x, x_removed)
COND2(false, x, x_removed) → F(plus_int(pos(s(0)), mult_int(x_removed, x)), x_removed)

The TRS R consists of the following rules:

greater_int(pos(0), pos(s(y))) → false
greater_int(neg(0), pos(s(y))) → false
greater_int(neg(s(x)), pos(s(y))) → false
greater_int(pos(s(x)), pos(s(y))) → greater_int(pos(x), pos(y))
greater_int(pos(0), pos(0)) → false
greater_int(pos(s(x)), pos(0)) → true
mod_int(pos(x), pos(y)) → pos(mod_nat(x, y))
mod_int(neg(x), pos(y)) → neg(mod_nat(x, y))
equal_int(pos(0), pos(0)) → true
equal_int(neg(0), pos(0)) → true
equal_int(pos(s(x)), pos(0)) → false
equal_int(neg(s(x)), pos(0)) → false
mod_nat(0, s(x)) → 0
mod_nat(s(x), s(y)) → if(greatereq_int(pos(x), pos(y)), mod_nat(minus_nat_s(x, y), s(y)), s(x))
greatereq_int(pos(x), pos(0)) → true
greatereq_int(pos(0), pos(s(y))) → false
greatereq_int(pos(s(x)), pos(s(y))) → greatereq_int(pos(x), pos(y))
minus_nat_s(x, 0) → x
minus_nat_s(0, s(y)) → 0
minus_nat_s(s(x), s(y)) → minus_nat_s(x, y)
if(true, x, y) → x
if(false, x, y) → y
mult_int(pos(x), pos(y)) → pos(mult_nat(x, y))
mult_int(pos(x), neg(y)) → neg(mult_nat(x, y))
plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
mult_nat(0, y) → 0
mult_nat(s(x), 0) → 0
mult_nat(s(x), s(y)) → plus_nat(mult_nat(x, s(y)), s(y))

The set Q consists of the following terms:

plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
mult_int(pos(x0), pos(x1))
mult_int(pos(x0), neg(x1))
mult_int(neg(x0), pos(x1))
mult_int(neg(x0), neg(x1))
mult_nat(0, x0)
mult_nat(s(x0), 0)
mult_nat(s(x0), s(x1))
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
if(true, x0, x1)
if(false, x0, x1)
minus_nat_s(x0, 0)
minus_nat_s(0, s(x0))
minus_nat_s(s(x0), s(x1))
equal_int(pos(0), pos(0))
equal_int(neg(0), pos(0))
equal_int(neg(0), neg(0))
equal_int(pos(0), neg(0))
equal_int(pos(0), pos(s(x0)))
equal_int(neg(0), pos(s(x0)))
equal_int(pos(0), neg(s(x0)))
equal_int(neg(0), neg(s(x0)))
equal_int(pos(s(x0)), pos(0))
equal_int(pos(s(x0)), neg(0))
equal_int(neg(s(x0)), pos(0))
equal_int(neg(s(x0)), neg(0))
equal_int(pos(s(x0)), neg(s(x1)))
equal_int(neg(s(x0)), pos(s(x1)))
equal_int(pos(s(x0)), pos(s(x1)))
equal_int(neg(s(x0)), neg(s(x1)))
mod_int(pos(x0), pos(x1))
mod_int(pos(x0), neg(x1))
mod_int(neg(x0), pos(x1))
mod_int(neg(x0), neg(x1))
mod_nat(0, s(x0))
mod_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
By narrowing [LPAR04] the rule F(x) → COND1(greater_int(x, pos(s(0))), x) at position [0] we obtained the following new rules [LPAR04]:

F(neg(0)) → COND1(false, neg(0))
F(pos(0)) → COND1(false, pos(0))
F(neg(s(x0))) → COND1(false, neg(s(x0)))
F(pos(s(x0))) → COND1(greater_int(pos(x0), pos(0)), pos(s(x0)))



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ QDPOrderProof
                          ↳ QDP
                            ↳ UsableRulesProof
                              ↳ QDP
                                ↳ QReductionProof
                                  ↳ QDP
                                    ↳ RemovalProof
                                    ↳ RemovalProof
                                    ↳ Narrowing
QDP
                                        ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

COND1(true, x) → COND2(equal_int(mod_int(x, pos(s(s(0)))), pos(0)), x)
COND2(false, x) → F(plus_int(pos(s(0)), mult_int(pos(s(s(s(0)))), x)))
F(neg(0)) → COND1(false, neg(0))
F(pos(0)) → COND1(false, pos(0))
F(neg(s(x0))) → COND1(false, neg(s(x0)))
F(pos(s(x0))) → COND1(greater_int(pos(x0), pos(0)), pos(s(x0)))

The TRS R consists of the following rules:

greater_int(pos(0), pos(s(y))) → false
greater_int(neg(0), pos(s(y))) → false
greater_int(neg(s(x)), pos(s(y))) → false
greater_int(pos(s(x)), pos(s(y))) → greater_int(pos(x), pos(y))
greater_int(pos(0), pos(0)) → false
greater_int(pos(s(x)), pos(0)) → true
mod_int(pos(x), pos(y)) → pos(mod_nat(x, y))
mod_int(neg(x), pos(y)) → neg(mod_nat(x, y))
equal_int(pos(0), pos(0)) → true
equal_int(neg(0), pos(0)) → true
equal_int(pos(s(x)), pos(0)) → false
equal_int(neg(s(x)), pos(0)) → false
mod_nat(0, s(x)) → 0
mod_nat(s(x), s(y)) → if(greatereq_int(pos(x), pos(y)), mod_nat(minus_nat_s(x, y), s(y)), s(x))
greatereq_int(pos(x), pos(0)) → true
greatereq_int(pos(0), pos(s(y))) → false
greatereq_int(pos(s(x)), pos(s(y))) → greatereq_int(pos(x), pos(y))
minus_nat_s(x, 0) → x
minus_nat_s(0, s(y)) → 0
minus_nat_s(s(x), s(y)) → minus_nat_s(x, y)
if(true, x, y) → x
if(false, x, y) → y
mult_int(pos(x), pos(y)) → pos(mult_nat(x, y))
mult_int(pos(x), neg(y)) → neg(mult_nat(x, y))
plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
mult_nat(0, y) → 0
mult_nat(s(x), 0) → 0
mult_nat(s(x), s(y)) → plus_nat(mult_nat(x, s(y)), s(y))

The set Q consists of the following terms:

plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
mult_int(pos(x0), pos(x1))
mult_int(pos(x0), neg(x1))
mult_int(neg(x0), pos(x1))
mult_int(neg(x0), neg(x1))
mult_nat(0, x0)
mult_nat(s(x0), 0)
mult_nat(s(x0), s(x1))
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
if(true, x0, x1)
if(false, x0, x1)
minus_nat_s(x0, 0)
minus_nat_s(0, s(x0))
minus_nat_s(s(x0), s(x1))
equal_int(pos(0), pos(0))
equal_int(neg(0), pos(0))
equal_int(neg(0), neg(0))
equal_int(pos(0), neg(0))
equal_int(pos(0), pos(s(x0)))
equal_int(neg(0), pos(s(x0)))
equal_int(pos(0), neg(s(x0)))
equal_int(neg(0), neg(s(x0)))
equal_int(pos(s(x0)), pos(0))
equal_int(pos(s(x0)), neg(0))
equal_int(neg(s(x0)), pos(0))
equal_int(neg(s(x0)), neg(0))
equal_int(pos(s(x0)), neg(s(x1)))
equal_int(neg(s(x0)), pos(s(x1)))
equal_int(pos(s(x0)), pos(s(x1)))
equal_int(neg(s(x0)), neg(s(x1)))
mod_int(pos(x0), pos(x1))
mod_int(pos(x0), neg(x1))
mod_int(neg(x0), pos(x1))
mod_int(neg(x0), neg(x1))
mod_nat(0, s(x0))
mod_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 3 less nodes.

↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ QDPOrderProof
                          ↳ QDP
                            ↳ UsableRulesProof
                              ↳ QDP
                                ↳ QReductionProof
                                  ↳ QDP
                                    ↳ RemovalProof
                                    ↳ RemovalProof
                                    ↳ Narrowing
                                      ↳ QDP
                                        ↳ DependencyGraphProof
QDP
                                            ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

COND2(false, x) → F(plus_int(pos(s(0)), mult_int(pos(s(s(s(0)))), x)))
F(pos(s(x0))) → COND1(greater_int(pos(x0), pos(0)), pos(s(x0)))
COND1(true, x) → COND2(equal_int(mod_int(x, pos(s(s(0)))), pos(0)), x)

The TRS R consists of the following rules:

greater_int(pos(0), pos(s(y))) → false
greater_int(neg(0), pos(s(y))) → false
greater_int(neg(s(x)), pos(s(y))) → false
greater_int(pos(s(x)), pos(s(y))) → greater_int(pos(x), pos(y))
greater_int(pos(0), pos(0)) → false
greater_int(pos(s(x)), pos(0)) → true
mod_int(pos(x), pos(y)) → pos(mod_nat(x, y))
mod_int(neg(x), pos(y)) → neg(mod_nat(x, y))
equal_int(pos(0), pos(0)) → true
equal_int(neg(0), pos(0)) → true
equal_int(pos(s(x)), pos(0)) → false
equal_int(neg(s(x)), pos(0)) → false
mod_nat(0, s(x)) → 0
mod_nat(s(x), s(y)) → if(greatereq_int(pos(x), pos(y)), mod_nat(minus_nat_s(x, y), s(y)), s(x))
greatereq_int(pos(x), pos(0)) → true
greatereq_int(pos(0), pos(s(y))) → false
greatereq_int(pos(s(x)), pos(s(y))) → greatereq_int(pos(x), pos(y))
minus_nat_s(x, 0) → x
minus_nat_s(0, s(y)) → 0
minus_nat_s(s(x), s(y)) → minus_nat_s(x, y)
if(true, x, y) → x
if(false, x, y) → y
mult_int(pos(x), pos(y)) → pos(mult_nat(x, y))
mult_int(pos(x), neg(y)) → neg(mult_nat(x, y))
plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
mult_nat(0, y) → 0
mult_nat(s(x), 0) → 0
mult_nat(s(x), s(y)) → plus_nat(mult_nat(x, s(y)), s(y))

The set Q consists of the following terms:

plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
mult_int(pos(x0), pos(x1))
mult_int(pos(x0), neg(x1))
mult_int(neg(x0), pos(x1))
mult_int(neg(x0), neg(x1))
mult_nat(0, x0)
mult_nat(s(x0), 0)
mult_nat(s(x0), s(x1))
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
if(true, x0, x1)
if(false, x0, x1)
minus_nat_s(x0, 0)
minus_nat_s(0, s(x0))
minus_nat_s(s(x0), s(x1))
equal_int(pos(0), pos(0))
equal_int(neg(0), pos(0))
equal_int(neg(0), neg(0))
equal_int(pos(0), neg(0))
equal_int(pos(0), pos(s(x0)))
equal_int(neg(0), pos(s(x0)))
equal_int(pos(0), neg(s(x0)))
equal_int(neg(0), neg(s(x0)))
equal_int(pos(s(x0)), pos(0))
equal_int(pos(s(x0)), neg(0))
equal_int(neg(s(x0)), pos(0))
equal_int(neg(s(x0)), neg(0))
equal_int(pos(s(x0)), neg(s(x1)))
equal_int(neg(s(x0)), pos(s(x1)))
equal_int(pos(s(x0)), pos(s(x1)))
equal_int(neg(s(x0)), neg(s(x1)))
mod_int(pos(x0), pos(x1))
mod_int(pos(x0), neg(x1))
mod_int(neg(x0), pos(x1))
mod_int(neg(x0), neg(x1))
mod_nat(0, s(x0))
mod_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.

↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ QDPOrderProof
                          ↳ QDP
                            ↳ UsableRulesProof
                              ↳ QDP
                                ↳ QReductionProof
                                  ↳ QDP
                                    ↳ RemovalProof
                                    ↳ RemovalProof
                                    ↳ Narrowing
                                      ↳ QDP
                                        ↳ DependencyGraphProof
                                          ↳ QDP
                                            ↳ UsableRulesProof
QDP
                                                ↳ Narrowing

Q DP problem:
The TRS P consists of the following rules:

COND2(false, x) → F(plus_int(pos(s(0)), mult_int(pos(s(s(s(0)))), x)))
F(pos(s(x0))) → COND1(greater_int(pos(x0), pos(0)), pos(s(x0)))
COND1(true, x) → COND2(equal_int(mod_int(x, pos(s(s(0)))), pos(0)), x)

The TRS R consists of the following rules:

mult_int(pos(x), pos(y)) → pos(mult_nat(x, y))
mult_int(pos(x), neg(y)) → neg(mult_nat(x, y))
plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
mult_nat(0, y) → 0
mult_nat(s(x), 0) → 0
mult_nat(s(x), s(y)) → plus_nat(mult_nat(x, s(y)), s(y))
greater_int(pos(0), pos(0)) → false
greater_int(pos(s(x)), pos(0)) → true
mod_int(pos(x), pos(y)) → pos(mod_nat(x, y))
mod_int(neg(x), pos(y)) → neg(mod_nat(x, y))
equal_int(pos(0), pos(0)) → true
equal_int(neg(0), pos(0)) → true
equal_int(pos(s(x)), pos(0)) → false
equal_int(neg(s(x)), pos(0)) → false
mod_nat(0, s(x)) → 0
mod_nat(s(x), s(y)) → if(greatereq_int(pos(x), pos(y)), mod_nat(minus_nat_s(x, y), s(y)), s(x))
greatereq_int(pos(x), pos(0)) → true
greatereq_int(pos(0), pos(s(y))) → false
greatereq_int(pos(s(x)), pos(s(y))) → greatereq_int(pos(x), pos(y))
minus_nat_s(x, 0) → x
minus_nat_s(0, s(y)) → 0
minus_nat_s(s(x), s(y)) → minus_nat_s(x, y)
if(true, x, y) → x
if(false, x, y) → y

The set Q consists of the following terms:

plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
mult_int(pos(x0), pos(x1))
mult_int(pos(x0), neg(x1))
mult_int(neg(x0), pos(x1))
mult_int(neg(x0), neg(x1))
mult_nat(0, x0)
mult_nat(s(x0), 0)
mult_nat(s(x0), s(x1))
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
if(true, x0, x1)
if(false, x0, x1)
minus_nat_s(x0, 0)
minus_nat_s(0, s(x0))
minus_nat_s(s(x0), s(x1))
equal_int(pos(0), pos(0))
equal_int(neg(0), pos(0))
equal_int(neg(0), neg(0))
equal_int(pos(0), neg(0))
equal_int(pos(0), pos(s(x0)))
equal_int(neg(0), pos(s(x0)))
equal_int(pos(0), neg(s(x0)))
equal_int(neg(0), neg(s(x0)))
equal_int(pos(s(x0)), pos(0))
equal_int(pos(s(x0)), neg(0))
equal_int(neg(s(x0)), pos(0))
equal_int(neg(s(x0)), neg(0))
equal_int(pos(s(x0)), neg(s(x1)))
equal_int(neg(s(x0)), pos(s(x1)))
equal_int(pos(s(x0)), pos(s(x1)))
equal_int(neg(s(x0)), neg(s(x1)))
mod_int(pos(x0), pos(x1))
mod_int(pos(x0), neg(x1))
mod_int(neg(x0), pos(x1))
mod_int(neg(x0), neg(x1))
mod_nat(0, s(x0))
mod_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
By narrowing [LPAR04] the rule COND2(false, x) → F(plus_int(pos(s(0)), mult_int(pos(s(s(s(0)))), x))) at position [0] we obtained the following new rules [LPAR04]:

COND2(false, pos(x1)) → F(plus_int(pos(s(0)), pos(mult_nat(s(s(s(0))), x1))))
COND2(false, neg(x1)) → F(plus_int(pos(s(0)), neg(mult_nat(s(s(s(0))), x1))))



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ QDPOrderProof
                          ↳ QDP
                            ↳ UsableRulesProof
                              ↳ QDP
                                ↳ QReductionProof
                                  ↳ QDP
                                    ↳ RemovalProof
                                    ↳ RemovalProof
                                    ↳ Narrowing
                                      ↳ QDP
                                        ↳ DependencyGraphProof
                                          ↳ QDP
                                            ↳ UsableRulesProof
                                              ↳ QDP
                                                ↳ Narrowing
QDP
                                                    ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

F(pos(s(x0))) → COND1(greater_int(pos(x0), pos(0)), pos(s(x0)))
COND1(true, x) → COND2(equal_int(mod_int(x, pos(s(s(0)))), pos(0)), x)
COND2(false, pos(x1)) → F(plus_int(pos(s(0)), pos(mult_nat(s(s(s(0))), x1))))
COND2(false, neg(x1)) → F(plus_int(pos(s(0)), neg(mult_nat(s(s(s(0))), x1))))

The TRS R consists of the following rules:

mult_int(pos(x), pos(y)) → pos(mult_nat(x, y))
mult_int(pos(x), neg(y)) → neg(mult_nat(x, y))
plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
mult_nat(0, y) → 0
mult_nat(s(x), 0) → 0
mult_nat(s(x), s(y)) → plus_nat(mult_nat(x, s(y)), s(y))
greater_int(pos(0), pos(0)) → false
greater_int(pos(s(x)), pos(0)) → true
mod_int(pos(x), pos(y)) → pos(mod_nat(x, y))
mod_int(neg(x), pos(y)) → neg(mod_nat(x, y))
equal_int(pos(0), pos(0)) → true
equal_int(neg(0), pos(0)) → true
equal_int(pos(s(x)), pos(0)) → false
equal_int(neg(s(x)), pos(0)) → false
mod_nat(0, s(x)) → 0
mod_nat(s(x), s(y)) → if(greatereq_int(pos(x), pos(y)), mod_nat(minus_nat_s(x, y), s(y)), s(x))
greatereq_int(pos(x), pos(0)) → true
greatereq_int(pos(0), pos(s(y))) → false
greatereq_int(pos(s(x)), pos(s(y))) → greatereq_int(pos(x), pos(y))
minus_nat_s(x, 0) → x
minus_nat_s(0, s(y)) → 0
minus_nat_s(s(x), s(y)) → minus_nat_s(x, y)
if(true, x, y) → x
if(false, x, y) → y

The set Q consists of the following terms:

plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
mult_int(pos(x0), pos(x1))
mult_int(pos(x0), neg(x1))
mult_int(neg(x0), pos(x1))
mult_int(neg(x0), neg(x1))
mult_nat(0, x0)
mult_nat(s(x0), 0)
mult_nat(s(x0), s(x1))
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
if(true, x0, x1)
if(false, x0, x1)
minus_nat_s(x0, 0)
minus_nat_s(0, s(x0))
minus_nat_s(s(x0), s(x1))
equal_int(pos(0), pos(0))
equal_int(neg(0), pos(0))
equal_int(neg(0), neg(0))
equal_int(pos(0), neg(0))
equal_int(pos(0), pos(s(x0)))
equal_int(neg(0), pos(s(x0)))
equal_int(pos(0), neg(s(x0)))
equal_int(neg(0), neg(s(x0)))
equal_int(pos(s(x0)), pos(0))
equal_int(pos(s(x0)), neg(0))
equal_int(neg(s(x0)), pos(0))
equal_int(neg(s(x0)), neg(0))
equal_int(pos(s(x0)), neg(s(x1)))
equal_int(neg(s(x0)), pos(s(x1)))
equal_int(pos(s(x0)), pos(s(x1)))
equal_int(neg(s(x0)), neg(s(x1)))
mod_int(pos(x0), pos(x1))
mod_int(pos(x0), neg(x1))
mod_int(neg(x0), pos(x1))
mod_int(neg(x0), neg(x1))
mod_nat(0, s(x0))
mod_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.

↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ QDPOrderProof
                          ↳ QDP
                            ↳ UsableRulesProof
                              ↳ QDP
                                ↳ QReductionProof
                                  ↳ QDP
                                    ↳ RemovalProof
                                    ↳ RemovalProof
                                    ↳ Narrowing
                                      ↳ QDP
                                        ↳ DependencyGraphProof
                                          ↳ QDP
                                            ↳ UsableRulesProof
                                              ↳ QDP
                                                ↳ Narrowing
                                                  ↳ QDP
                                                    ↳ UsableRulesProof
QDP
                                                        ↳ QReductionProof

Q DP problem:
The TRS P consists of the following rules:

F(pos(s(x0))) → COND1(greater_int(pos(x0), pos(0)), pos(s(x0)))
COND1(true, x) → COND2(equal_int(mod_int(x, pos(s(s(0)))), pos(0)), x)
COND2(false, pos(x1)) → F(plus_int(pos(s(0)), pos(mult_nat(s(s(s(0))), x1))))
COND2(false, neg(x1)) → F(plus_int(pos(s(0)), neg(mult_nat(s(s(s(0))), x1))))

The TRS R consists of the following rules:

mod_int(pos(x), pos(y)) → pos(mod_nat(x, y))
mod_int(neg(x), pos(y)) → neg(mod_nat(x, y))
equal_int(pos(0), pos(0)) → true
equal_int(neg(0), pos(0)) → true
equal_int(pos(s(x)), pos(0)) → false
equal_int(neg(s(x)), pos(0)) → false
mod_nat(0, s(x)) → 0
mod_nat(s(x), s(y)) → if(greatereq_int(pos(x), pos(y)), mod_nat(minus_nat_s(x, y), s(y)), s(x))
greatereq_int(pos(x), pos(0)) → true
greatereq_int(pos(0), pos(s(y))) → false
greatereq_int(pos(s(x)), pos(s(y))) → greatereq_int(pos(x), pos(y))
minus_nat_s(x, 0) → x
minus_nat_s(0, s(y)) → 0
minus_nat_s(s(x), s(y)) → minus_nat_s(x, y)
if(true, x, y) → x
if(false, x, y) → y
greater_int(pos(0), pos(0)) → false
greater_int(pos(s(x)), pos(0)) → true
mult_nat(s(x), 0) → 0
mult_nat(s(x), s(y)) → plus_nat(mult_nat(x, s(y)), s(y))
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
mult_nat(0, y) → 0
plus_int(pos(x), neg(y)) → minus_nat(x, y)
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)

The set Q consists of the following terms:

plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
mult_int(pos(x0), pos(x1))
mult_int(pos(x0), neg(x1))
mult_int(neg(x0), pos(x1))
mult_int(neg(x0), neg(x1))
mult_nat(0, x0)
mult_nat(s(x0), 0)
mult_nat(s(x0), s(x1))
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
if(true, x0, x1)
if(false, x0, x1)
minus_nat_s(x0, 0)
minus_nat_s(0, s(x0))
minus_nat_s(s(x0), s(x1))
equal_int(pos(0), pos(0))
equal_int(neg(0), pos(0))
equal_int(neg(0), neg(0))
equal_int(pos(0), neg(0))
equal_int(pos(0), pos(s(x0)))
equal_int(neg(0), pos(s(x0)))
equal_int(pos(0), neg(s(x0)))
equal_int(neg(0), neg(s(x0)))
equal_int(pos(s(x0)), pos(0))
equal_int(pos(s(x0)), neg(0))
equal_int(neg(s(x0)), pos(0))
equal_int(neg(s(x0)), neg(0))
equal_int(pos(s(x0)), neg(s(x1)))
equal_int(neg(s(x0)), pos(s(x1)))
equal_int(pos(s(x0)), pos(s(x1)))
equal_int(neg(s(x0)), neg(s(x1)))
mod_int(pos(x0), pos(x1))
mod_int(pos(x0), neg(x1))
mod_int(neg(x0), pos(x1))
mod_int(neg(x0), neg(x1))
mod_nat(0, s(x0))
mod_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].

mult_int(pos(x0), pos(x1))
mult_int(pos(x0), neg(x1))
mult_int(neg(x0), pos(x1))
mult_int(neg(x0), neg(x1))



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ QDPOrderProof
                          ↳ QDP
                            ↳ UsableRulesProof
                              ↳ QDP
                                ↳ QReductionProof
                                  ↳ QDP
                                    ↳ RemovalProof
                                    ↳ RemovalProof
                                    ↳ Narrowing
                                      ↳ QDP
                                        ↳ DependencyGraphProof
                                          ↳ QDP
                                            ↳ UsableRulesProof
                                              ↳ QDP
                                                ↳ Narrowing
                                                  ↳ QDP
                                                    ↳ UsableRulesProof
                                                      ↳ QDP
                                                        ↳ QReductionProof
QDP
                                                            ↳ Rewriting

Q DP problem:
The TRS P consists of the following rules:

F(pos(s(x0))) → COND1(greater_int(pos(x0), pos(0)), pos(s(x0)))
COND1(true, x) → COND2(equal_int(mod_int(x, pos(s(s(0)))), pos(0)), x)
COND2(false, pos(x1)) → F(plus_int(pos(s(0)), pos(mult_nat(s(s(s(0))), x1))))
COND2(false, neg(x1)) → F(plus_int(pos(s(0)), neg(mult_nat(s(s(s(0))), x1))))

The TRS R consists of the following rules:

mod_int(pos(x), pos(y)) → pos(mod_nat(x, y))
mod_int(neg(x), pos(y)) → neg(mod_nat(x, y))
equal_int(pos(0), pos(0)) → true
equal_int(neg(0), pos(0)) → true
equal_int(pos(s(x)), pos(0)) → false
equal_int(neg(s(x)), pos(0)) → false
mod_nat(0, s(x)) → 0
mod_nat(s(x), s(y)) → if(greatereq_int(pos(x), pos(y)), mod_nat(minus_nat_s(x, y), s(y)), s(x))
greatereq_int(pos(x), pos(0)) → true
greatereq_int(pos(0), pos(s(y))) → false
greatereq_int(pos(s(x)), pos(s(y))) → greatereq_int(pos(x), pos(y))
minus_nat_s(x, 0) → x
minus_nat_s(0, s(y)) → 0
minus_nat_s(s(x), s(y)) → minus_nat_s(x, y)
if(true, x, y) → x
if(false, x, y) → y
greater_int(pos(0), pos(0)) → false
greater_int(pos(s(x)), pos(0)) → true
mult_nat(s(x), 0) → 0
mult_nat(s(x), s(y)) → plus_nat(mult_nat(x, s(y)), s(y))
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
mult_nat(0, y) → 0
plus_int(pos(x), neg(y)) → minus_nat(x, y)
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)

The set Q consists of the following terms:

plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
mult_nat(0, x0)
mult_nat(s(x0), 0)
mult_nat(s(x0), s(x1))
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
if(true, x0, x1)
if(false, x0, x1)
minus_nat_s(x0, 0)
minus_nat_s(0, s(x0))
minus_nat_s(s(x0), s(x1))
equal_int(pos(0), pos(0))
equal_int(neg(0), pos(0))
equal_int(neg(0), neg(0))
equal_int(pos(0), neg(0))
equal_int(pos(0), pos(s(x0)))
equal_int(neg(0), pos(s(x0)))
equal_int(pos(0), neg(s(x0)))
equal_int(neg(0), neg(s(x0)))
equal_int(pos(s(x0)), pos(0))
equal_int(pos(s(x0)), neg(0))
equal_int(neg(s(x0)), pos(0))
equal_int(neg(s(x0)), neg(0))
equal_int(pos(s(x0)), neg(s(x1)))
equal_int(neg(s(x0)), pos(s(x1)))
equal_int(pos(s(x0)), pos(s(x1)))
equal_int(neg(s(x0)), neg(s(x1)))
mod_int(pos(x0), pos(x1))
mod_int(pos(x0), neg(x1))
mod_int(neg(x0), pos(x1))
mod_int(neg(x0), neg(x1))
mod_nat(0, s(x0))
mod_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
By rewriting [LPAR04] the rule COND2(false, pos(x1)) → F(plus_int(pos(s(0)), pos(mult_nat(s(s(s(0))), x1)))) at position [0] we obtained the following new rules [LPAR04]:

COND2(false, pos(x1)) → F(pos(plus_nat(s(0), mult_nat(s(s(s(0))), x1))))



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ QDPOrderProof
                          ↳ QDP
                            ↳ UsableRulesProof
                              ↳ QDP
                                ↳ QReductionProof
                                  ↳ QDP
                                    ↳ RemovalProof
                                    ↳ RemovalProof
                                    ↳ Narrowing
                                      ↳ QDP
                                        ↳ DependencyGraphProof
                                          ↳ QDP
                                            ↳ UsableRulesProof
                                              ↳ QDP
                                                ↳ Narrowing
                                                  ↳ QDP
                                                    ↳ UsableRulesProof
                                                      ↳ QDP
                                                        ↳ QReductionProof
                                                          ↳ QDP
                                                            ↳ Rewriting
QDP
                                                                ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

F(pos(s(x0))) → COND1(greater_int(pos(x0), pos(0)), pos(s(x0)))
COND1(true, x) → COND2(equal_int(mod_int(x, pos(s(s(0)))), pos(0)), x)
COND2(false, neg(x1)) → F(plus_int(pos(s(0)), neg(mult_nat(s(s(s(0))), x1))))
COND2(false, pos(x1)) → F(pos(plus_nat(s(0), mult_nat(s(s(s(0))), x1))))

The TRS R consists of the following rules:

mod_int(pos(x), pos(y)) → pos(mod_nat(x, y))
mod_int(neg(x), pos(y)) → neg(mod_nat(x, y))
equal_int(pos(0), pos(0)) → true
equal_int(neg(0), pos(0)) → true
equal_int(pos(s(x)), pos(0)) → false
equal_int(neg(s(x)), pos(0)) → false
mod_nat(0, s(x)) → 0
mod_nat(s(x), s(y)) → if(greatereq_int(pos(x), pos(y)), mod_nat(minus_nat_s(x, y), s(y)), s(x))
greatereq_int(pos(x), pos(0)) → true
greatereq_int(pos(0), pos(s(y))) → false
greatereq_int(pos(s(x)), pos(s(y))) → greatereq_int(pos(x), pos(y))
minus_nat_s(x, 0) → x
minus_nat_s(0, s(y)) → 0
minus_nat_s(s(x), s(y)) → minus_nat_s(x, y)
if(true, x, y) → x
if(false, x, y) → y
greater_int(pos(0), pos(0)) → false
greater_int(pos(s(x)), pos(0)) → true
mult_nat(s(x), 0) → 0
mult_nat(s(x), s(y)) → plus_nat(mult_nat(x, s(y)), s(y))
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
mult_nat(0, y) → 0
plus_int(pos(x), neg(y)) → minus_nat(x, y)
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)

The set Q consists of the following terms:

plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
mult_nat(0, x0)
mult_nat(s(x0), 0)
mult_nat(s(x0), s(x1))
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
if(true, x0, x1)
if(false, x0, x1)
minus_nat_s(x0, 0)
minus_nat_s(0, s(x0))
minus_nat_s(s(x0), s(x1))
equal_int(pos(0), pos(0))
equal_int(neg(0), pos(0))
equal_int(neg(0), neg(0))
equal_int(pos(0), neg(0))
equal_int(pos(0), pos(s(x0)))
equal_int(neg(0), pos(s(x0)))
equal_int(pos(0), neg(s(x0)))
equal_int(neg(0), neg(s(x0)))
equal_int(pos(s(x0)), pos(0))
equal_int(pos(s(x0)), neg(0))
equal_int(neg(s(x0)), pos(0))
equal_int(neg(s(x0)), neg(0))
equal_int(pos(s(x0)), neg(s(x1)))
equal_int(neg(s(x0)), pos(s(x1)))
equal_int(pos(s(x0)), pos(s(x1)))
equal_int(neg(s(x0)), neg(s(x1)))
mod_int(pos(x0), pos(x1))
mod_int(pos(x0), neg(x1))
mod_int(neg(x0), pos(x1))
mod_int(neg(x0), neg(x1))
mod_nat(0, s(x0))
mod_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.

↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ QDPOrderProof
                          ↳ QDP
                            ↳ UsableRulesProof
                              ↳ QDP
                                ↳ QReductionProof
                                  ↳ QDP
                                    ↳ RemovalProof
                                    ↳ RemovalProof
                                    ↳ Narrowing
                                      ↳ QDP
                                        ↳ DependencyGraphProof
                                          ↳ QDP
                                            ↳ UsableRulesProof
                                              ↳ QDP
                                                ↳ Narrowing
                                                  ↳ QDP
                                                    ↳ UsableRulesProof
                                                      ↳ QDP
                                                        ↳ QReductionProof
                                                          ↳ QDP
                                                            ↳ Rewriting
                                                              ↳ QDP
                                                                ↳ UsableRulesProof
QDP
                                                                    ↳ Rewriting

Q DP problem:
The TRS P consists of the following rules:

F(pos(s(x0))) → COND1(greater_int(pos(x0), pos(0)), pos(s(x0)))
COND1(true, x) → COND2(equal_int(mod_int(x, pos(s(s(0)))), pos(0)), x)
COND2(false, neg(x1)) → F(plus_int(pos(s(0)), neg(mult_nat(s(s(s(0))), x1))))
COND2(false, pos(x1)) → F(pos(plus_nat(s(0), mult_nat(s(s(s(0))), x1))))

The TRS R consists of the following rules:

mult_nat(s(x), 0) → 0
mult_nat(s(x), s(y)) → plus_nat(mult_nat(x, s(y)), s(y))
plus_int(pos(x), neg(y)) → minus_nat(x, y)
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
mult_nat(0, y) → 0
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
mod_int(pos(x), pos(y)) → pos(mod_nat(x, y))
mod_int(neg(x), pos(y)) → neg(mod_nat(x, y))
equal_int(pos(0), pos(0)) → true
equal_int(neg(0), pos(0)) → true
equal_int(pos(s(x)), pos(0)) → false
equal_int(neg(s(x)), pos(0)) → false
mod_nat(0, s(x)) → 0
mod_nat(s(x), s(y)) → if(greatereq_int(pos(x), pos(y)), mod_nat(minus_nat_s(x, y), s(y)), s(x))
greatereq_int(pos(x), pos(0)) → true
greatereq_int(pos(0), pos(s(y))) → false
greatereq_int(pos(s(x)), pos(s(y))) → greatereq_int(pos(x), pos(y))
minus_nat_s(x, 0) → x
minus_nat_s(0, s(y)) → 0
minus_nat_s(s(x), s(y)) → minus_nat_s(x, y)
if(true, x, y) → x
if(false, x, y) → y
greater_int(pos(0), pos(0)) → false
greater_int(pos(s(x)), pos(0)) → true

The set Q consists of the following terms:

plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
mult_nat(0, x0)
mult_nat(s(x0), 0)
mult_nat(s(x0), s(x1))
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
if(true, x0, x1)
if(false, x0, x1)
minus_nat_s(x0, 0)
minus_nat_s(0, s(x0))
minus_nat_s(s(x0), s(x1))
equal_int(pos(0), pos(0))
equal_int(neg(0), pos(0))
equal_int(neg(0), neg(0))
equal_int(pos(0), neg(0))
equal_int(pos(0), pos(s(x0)))
equal_int(neg(0), pos(s(x0)))
equal_int(pos(0), neg(s(x0)))
equal_int(neg(0), neg(s(x0)))
equal_int(pos(s(x0)), pos(0))
equal_int(pos(s(x0)), neg(0))
equal_int(neg(s(x0)), pos(0))
equal_int(neg(s(x0)), neg(0))
equal_int(pos(s(x0)), neg(s(x1)))
equal_int(neg(s(x0)), pos(s(x1)))
equal_int(pos(s(x0)), pos(s(x1)))
equal_int(neg(s(x0)), neg(s(x1)))
mod_int(pos(x0), pos(x1))
mod_int(pos(x0), neg(x1))
mod_int(neg(x0), pos(x1))
mod_int(neg(x0), neg(x1))
mod_nat(0, s(x0))
mod_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
By rewriting [LPAR04] the rule COND2(false, neg(x1)) → F(plus_int(pos(s(0)), neg(mult_nat(s(s(s(0))), x1)))) at position [0] we obtained the following new rules [LPAR04]:

COND2(false, neg(x1)) → F(minus_nat(s(0), mult_nat(s(s(s(0))), x1)))



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ QDPOrderProof
                          ↳ QDP
                            ↳ UsableRulesProof
                              ↳ QDP
                                ↳ QReductionProof
                                  ↳ QDP
                                    ↳ RemovalProof
                                    ↳ RemovalProof
                                    ↳ Narrowing
                                      ↳ QDP
                                        ↳ DependencyGraphProof
                                          ↳ QDP
                                            ↳ UsableRulesProof
                                              ↳ QDP
                                                ↳ Narrowing
                                                  ↳ QDP
                                                    ↳ UsableRulesProof
                                                      ↳ QDP
                                                        ↳ QReductionProof
                                                          ↳ QDP
                                                            ↳ Rewriting
                                                              ↳ QDP
                                                                ↳ UsableRulesProof
                                                                  ↳ QDP
                                                                    ↳ Rewriting
QDP
                                                                        ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

F(pos(s(x0))) → COND1(greater_int(pos(x0), pos(0)), pos(s(x0)))
COND1(true, x) → COND2(equal_int(mod_int(x, pos(s(s(0)))), pos(0)), x)
COND2(false, pos(x1)) → F(pos(plus_nat(s(0), mult_nat(s(s(s(0))), x1))))
COND2(false, neg(x1)) → F(minus_nat(s(0), mult_nat(s(s(s(0))), x1)))

The TRS R consists of the following rules:

mult_nat(s(x), 0) → 0
mult_nat(s(x), s(y)) → plus_nat(mult_nat(x, s(y)), s(y))
plus_int(pos(x), neg(y)) → minus_nat(x, y)
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
mult_nat(0, y) → 0
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
mod_int(pos(x), pos(y)) → pos(mod_nat(x, y))
mod_int(neg(x), pos(y)) → neg(mod_nat(x, y))
equal_int(pos(0), pos(0)) → true
equal_int(neg(0), pos(0)) → true
equal_int(pos(s(x)), pos(0)) → false
equal_int(neg(s(x)), pos(0)) → false
mod_nat(0, s(x)) → 0
mod_nat(s(x), s(y)) → if(greatereq_int(pos(x), pos(y)), mod_nat(minus_nat_s(x, y), s(y)), s(x))
greatereq_int(pos(x), pos(0)) → true
greatereq_int(pos(0), pos(s(y))) → false
greatereq_int(pos(s(x)), pos(s(y))) → greatereq_int(pos(x), pos(y))
minus_nat_s(x, 0) → x
minus_nat_s(0, s(y)) → 0
minus_nat_s(s(x), s(y)) → minus_nat_s(x, y)
if(true, x, y) → x
if(false, x, y) → y
greater_int(pos(0), pos(0)) → false
greater_int(pos(s(x)), pos(0)) → true

The set Q consists of the following terms:

plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
mult_nat(0, x0)
mult_nat(s(x0), 0)
mult_nat(s(x0), s(x1))
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
if(true, x0, x1)
if(false, x0, x1)
minus_nat_s(x0, 0)
minus_nat_s(0, s(x0))
minus_nat_s(s(x0), s(x1))
equal_int(pos(0), pos(0))
equal_int(neg(0), pos(0))
equal_int(neg(0), neg(0))
equal_int(pos(0), neg(0))
equal_int(pos(0), pos(s(x0)))
equal_int(neg(0), pos(s(x0)))
equal_int(pos(0), neg(s(x0)))
equal_int(neg(0), neg(s(x0)))
equal_int(pos(s(x0)), pos(0))
equal_int(pos(s(x0)), neg(0))
equal_int(neg(s(x0)), pos(0))
equal_int(neg(s(x0)), neg(0))
equal_int(pos(s(x0)), neg(s(x1)))
equal_int(neg(s(x0)), pos(s(x1)))
equal_int(pos(s(x0)), pos(s(x1)))
equal_int(neg(s(x0)), neg(s(x1)))
mod_int(pos(x0), pos(x1))
mod_int(pos(x0), neg(x1))
mod_int(neg(x0), pos(x1))
mod_int(neg(x0), neg(x1))
mod_nat(0, s(x0))
mod_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.

↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ QDPOrderProof
                          ↳ QDP
                            ↳ UsableRulesProof
                              ↳ QDP
                                ↳ QReductionProof
                                  ↳ QDP
                                    ↳ RemovalProof
                                    ↳ RemovalProof
                                    ↳ Narrowing
                                      ↳ QDP
                                        ↳ DependencyGraphProof
                                          ↳ QDP
                                            ↳ UsableRulesProof
                                              ↳ QDP
                                                ↳ Narrowing
                                                  ↳ QDP
                                                    ↳ UsableRulesProof
                                                      ↳ QDP
                                                        ↳ QReductionProof
                                                          ↳ QDP
                                                            ↳ Rewriting
                                                              ↳ QDP
                                                                ↳ UsableRulesProof
                                                                  ↳ QDP
                                                                    ↳ Rewriting
                                                                      ↳ QDP
                                                                        ↳ UsableRulesProof
QDP
                                                                            ↳ QReductionProof

Q DP problem:
The TRS P consists of the following rules:

F(pos(s(x0))) → COND1(greater_int(pos(x0), pos(0)), pos(s(x0)))
COND1(true, x) → COND2(equal_int(mod_int(x, pos(s(s(0)))), pos(0)), x)
COND2(false, pos(x1)) → F(pos(plus_nat(s(0), mult_nat(s(s(s(0))), x1))))
COND2(false, neg(x1)) → F(minus_nat(s(0), mult_nat(s(s(s(0))), x1)))

The TRS R consists of the following rules:

mod_int(pos(x), pos(y)) → pos(mod_nat(x, y))
mod_int(neg(x), pos(y)) → neg(mod_nat(x, y))
equal_int(pos(0), pos(0)) → true
equal_int(neg(0), pos(0)) → true
equal_int(pos(s(x)), pos(0)) → false
equal_int(neg(s(x)), pos(0)) → false
mod_nat(0, s(x)) → 0
mod_nat(s(x), s(y)) → if(greatereq_int(pos(x), pos(y)), mod_nat(minus_nat_s(x, y), s(y)), s(x))
greatereq_int(pos(x), pos(0)) → true
greatereq_int(pos(0), pos(s(y))) → false
greatereq_int(pos(s(x)), pos(s(y))) → greatereq_int(pos(x), pos(y))
minus_nat_s(x, 0) → x
minus_nat_s(0, s(y)) → 0
minus_nat_s(s(x), s(y)) → minus_nat_s(x, y)
if(true, x, y) → x
if(false, x, y) → y
mult_nat(s(x), 0) → 0
mult_nat(s(x), s(y)) → plus_nat(mult_nat(x, s(y)), s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
mult_nat(0, y) → 0
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
greater_int(pos(0), pos(0)) → false
greater_int(pos(s(x)), pos(0)) → true

The set Q consists of the following terms:

plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
mult_nat(0, x0)
mult_nat(s(x0), 0)
mult_nat(s(x0), s(x1))
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
if(true, x0, x1)
if(false, x0, x1)
minus_nat_s(x0, 0)
minus_nat_s(0, s(x0))
minus_nat_s(s(x0), s(x1))
equal_int(pos(0), pos(0))
equal_int(neg(0), pos(0))
equal_int(neg(0), neg(0))
equal_int(pos(0), neg(0))
equal_int(pos(0), pos(s(x0)))
equal_int(neg(0), pos(s(x0)))
equal_int(pos(0), neg(s(x0)))
equal_int(neg(0), neg(s(x0)))
equal_int(pos(s(x0)), pos(0))
equal_int(pos(s(x0)), neg(0))
equal_int(neg(s(x0)), pos(0))
equal_int(neg(s(x0)), neg(0))
equal_int(pos(s(x0)), neg(s(x1)))
equal_int(neg(s(x0)), pos(s(x1)))
equal_int(pos(s(x0)), pos(s(x1)))
equal_int(neg(s(x0)), neg(s(x1)))
mod_int(pos(x0), pos(x1))
mod_int(pos(x0), neg(x1))
mod_int(neg(x0), pos(x1))
mod_int(neg(x0), neg(x1))
mod_nat(0, s(x0))
mod_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].

plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ QDPOrderProof
                          ↳ QDP
                            ↳ UsableRulesProof
                              ↳ QDP
                                ↳ QReductionProof
                                  ↳ QDP
                                    ↳ RemovalProof
                                    ↳ RemovalProof
                                    ↳ Narrowing
                                      ↳ QDP
                                        ↳ DependencyGraphProof
                                          ↳ QDP
                                            ↳ UsableRulesProof
                                              ↳ QDP
                                                ↳ Narrowing
                                                  ↳ QDP
                                                    ↳ UsableRulesProof
                                                      ↳ QDP
                                                        ↳ QReductionProof
                                                          ↳ QDP
                                                            ↳ Rewriting
                                                              ↳ QDP
                                                                ↳ UsableRulesProof
                                                                  ↳ QDP
                                                                    ↳ Rewriting
                                                                      ↳ QDP
                                                                        ↳ UsableRulesProof
                                                                          ↳ QDP
                                                                            ↳ QReductionProof
QDP
                                                                                ↳ Rewriting

Q DP problem:
The TRS P consists of the following rules:

F(pos(s(x0))) → COND1(greater_int(pos(x0), pos(0)), pos(s(x0)))
COND1(true, x) → COND2(equal_int(mod_int(x, pos(s(s(0)))), pos(0)), x)
COND2(false, pos(x1)) → F(pos(plus_nat(s(0), mult_nat(s(s(s(0))), x1))))
COND2(false, neg(x1)) → F(minus_nat(s(0), mult_nat(s(s(s(0))), x1)))

The TRS R consists of the following rules:

mod_int(pos(x), pos(y)) → pos(mod_nat(x, y))
mod_int(neg(x), pos(y)) → neg(mod_nat(x, y))
equal_int(pos(0), pos(0)) → true
equal_int(neg(0), pos(0)) → true
equal_int(pos(s(x)), pos(0)) → false
equal_int(neg(s(x)), pos(0)) → false
mod_nat(0, s(x)) → 0
mod_nat(s(x), s(y)) → if(greatereq_int(pos(x), pos(y)), mod_nat(minus_nat_s(x, y), s(y)), s(x))
greatereq_int(pos(x), pos(0)) → true
greatereq_int(pos(0), pos(s(y))) → false
greatereq_int(pos(s(x)), pos(s(y))) → greatereq_int(pos(x), pos(y))
minus_nat_s(x, 0) → x
minus_nat_s(0, s(y)) → 0
minus_nat_s(s(x), s(y)) → minus_nat_s(x, y)
if(true, x, y) → x
if(false, x, y) → y
mult_nat(s(x), 0) → 0
mult_nat(s(x), s(y)) → plus_nat(mult_nat(x, s(y)), s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
mult_nat(0, y) → 0
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
greater_int(pos(0), pos(0)) → false
greater_int(pos(s(x)), pos(0)) → true

The set Q consists of the following terms:

plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
mult_nat(0, x0)
mult_nat(s(x0), 0)
mult_nat(s(x0), s(x1))
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
if(true, x0, x1)
if(false, x0, x1)
minus_nat_s(x0, 0)
minus_nat_s(0, s(x0))
minus_nat_s(s(x0), s(x1))
equal_int(pos(0), pos(0))
equal_int(neg(0), pos(0))
equal_int(neg(0), neg(0))
equal_int(pos(0), neg(0))
equal_int(pos(0), pos(s(x0)))
equal_int(neg(0), pos(s(x0)))
equal_int(pos(0), neg(s(x0)))
equal_int(neg(0), neg(s(x0)))
equal_int(pos(s(x0)), pos(0))
equal_int(pos(s(x0)), neg(0))
equal_int(neg(s(x0)), pos(0))
equal_int(neg(s(x0)), neg(0))
equal_int(pos(s(x0)), neg(s(x1)))
equal_int(neg(s(x0)), pos(s(x1)))
equal_int(pos(s(x0)), pos(s(x1)))
equal_int(neg(s(x0)), neg(s(x1)))
mod_int(pos(x0), pos(x1))
mod_int(pos(x0), neg(x1))
mod_int(neg(x0), pos(x1))
mod_int(neg(x0), neg(x1))
mod_nat(0, s(x0))
mod_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
By rewriting [LPAR04] the rule COND2(false, pos(x1)) → F(pos(plus_nat(s(0), mult_nat(s(s(s(0))), x1)))) at position [0,0] we obtained the following new rules [LPAR04]:

COND2(false, pos(x1)) → F(pos(s(plus_nat(0, mult_nat(s(s(s(0))), x1)))))



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ QDPOrderProof
                          ↳ QDP
                            ↳ UsableRulesProof
                              ↳ QDP
                                ↳ QReductionProof
                                  ↳ QDP
                                    ↳ RemovalProof
                                    ↳ RemovalProof
                                    ↳ Narrowing
                                      ↳ QDP
                                        ↳ DependencyGraphProof
                                          ↳ QDP
                                            ↳ UsableRulesProof
                                              ↳ QDP
                                                ↳ Narrowing
                                                  ↳ QDP
                                                    ↳ UsableRulesProof
                                                      ↳ QDP
                                                        ↳ QReductionProof
                                                          ↳ QDP
                                                            ↳ Rewriting
                                                              ↳ QDP
                                                                ↳ UsableRulesProof
                                                                  ↳ QDP
                                                                    ↳ Rewriting
                                                                      ↳ QDP
                                                                        ↳ UsableRulesProof
                                                                          ↳ QDP
                                                                            ↳ QReductionProof
                                                                              ↳ QDP
                                                                                ↳ Rewriting
QDP
                                                                                    ↳ Rewriting

Q DP problem:
The TRS P consists of the following rules:

F(pos(s(x0))) → COND1(greater_int(pos(x0), pos(0)), pos(s(x0)))
COND1(true, x) → COND2(equal_int(mod_int(x, pos(s(s(0)))), pos(0)), x)
COND2(false, neg(x1)) → F(minus_nat(s(0), mult_nat(s(s(s(0))), x1)))
COND2(false, pos(x1)) → F(pos(s(plus_nat(0, mult_nat(s(s(s(0))), x1)))))

The TRS R consists of the following rules:

mod_int(pos(x), pos(y)) → pos(mod_nat(x, y))
mod_int(neg(x), pos(y)) → neg(mod_nat(x, y))
equal_int(pos(0), pos(0)) → true
equal_int(neg(0), pos(0)) → true
equal_int(pos(s(x)), pos(0)) → false
equal_int(neg(s(x)), pos(0)) → false
mod_nat(0, s(x)) → 0
mod_nat(s(x), s(y)) → if(greatereq_int(pos(x), pos(y)), mod_nat(minus_nat_s(x, y), s(y)), s(x))
greatereq_int(pos(x), pos(0)) → true
greatereq_int(pos(0), pos(s(y))) → false
greatereq_int(pos(s(x)), pos(s(y))) → greatereq_int(pos(x), pos(y))
minus_nat_s(x, 0) → x
minus_nat_s(0, s(y)) → 0
minus_nat_s(s(x), s(y)) → minus_nat_s(x, y)
if(true, x, y) → x
if(false, x, y) → y
mult_nat(s(x), 0) → 0
mult_nat(s(x), s(y)) → plus_nat(mult_nat(x, s(y)), s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
mult_nat(0, y) → 0
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
greater_int(pos(0), pos(0)) → false
greater_int(pos(s(x)), pos(0)) → true

The set Q consists of the following terms:

plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
mult_nat(0, x0)
mult_nat(s(x0), 0)
mult_nat(s(x0), s(x1))
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
if(true, x0, x1)
if(false, x0, x1)
minus_nat_s(x0, 0)
minus_nat_s(0, s(x0))
minus_nat_s(s(x0), s(x1))
equal_int(pos(0), pos(0))
equal_int(neg(0), pos(0))
equal_int(neg(0), neg(0))
equal_int(pos(0), neg(0))
equal_int(pos(0), pos(s(x0)))
equal_int(neg(0), pos(s(x0)))
equal_int(pos(0), neg(s(x0)))
equal_int(neg(0), neg(s(x0)))
equal_int(pos(s(x0)), pos(0))
equal_int(pos(s(x0)), neg(0))
equal_int(neg(s(x0)), pos(0))
equal_int(neg(s(x0)), neg(0))
equal_int(pos(s(x0)), neg(s(x1)))
equal_int(neg(s(x0)), pos(s(x1)))
equal_int(pos(s(x0)), pos(s(x1)))
equal_int(neg(s(x0)), neg(s(x1)))
mod_int(pos(x0), pos(x1))
mod_int(pos(x0), neg(x1))
mod_int(neg(x0), pos(x1))
mod_int(neg(x0), neg(x1))
mod_nat(0, s(x0))
mod_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
By rewriting [LPAR04] the rule COND2(false, pos(x1)) → F(pos(s(plus_nat(0, mult_nat(s(s(s(0))), x1))))) at position [0,0,0] we obtained the following new rules [LPAR04]:

COND2(false, pos(x1)) → F(pos(s(mult_nat(s(s(s(0))), x1))))



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ QDPOrderProof
                          ↳ QDP
                            ↳ UsableRulesProof
                              ↳ QDP
                                ↳ QReductionProof
                                  ↳ QDP
                                    ↳ RemovalProof
                                    ↳ RemovalProof
                                    ↳ Narrowing
                                      ↳ QDP
                                        ↳ DependencyGraphProof
                                          ↳ QDP
                                            ↳ UsableRulesProof
                                              ↳ QDP
                                                ↳ Narrowing
                                                  ↳ QDP
                                                    ↳ UsableRulesProof
                                                      ↳ QDP
                                                        ↳ QReductionProof
                                                          ↳ QDP
                                                            ↳ Rewriting
                                                              ↳ QDP
                                                                ↳ UsableRulesProof
                                                                  ↳ QDP
                                                                    ↳ Rewriting
                                                                      ↳ QDP
                                                                        ↳ UsableRulesProof
                                                                          ↳ QDP
                                                                            ↳ QReductionProof
                                                                              ↳ QDP
                                                                                ↳ Rewriting
                                                                                  ↳ QDP
                                                                                    ↳ Rewriting
QDP
                                                                                        ↳ Narrowing

Q DP problem:
The TRS P consists of the following rules:

F(pos(s(x0))) → COND1(greater_int(pos(x0), pos(0)), pos(s(x0)))
COND1(true, x) → COND2(equal_int(mod_int(x, pos(s(s(0)))), pos(0)), x)
COND2(false, neg(x1)) → F(minus_nat(s(0), mult_nat(s(s(s(0))), x1)))
COND2(false, pos(x1)) → F(pos(s(mult_nat(s(s(s(0))), x1))))

The TRS R consists of the following rules:

mod_int(pos(x), pos(y)) → pos(mod_nat(x, y))
mod_int(neg(x), pos(y)) → neg(mod_nat(x, y))
equal_int(pos(0), pos(0)) → true
equal_int(neg(0), pos(0)) → true
equal_int(pos(s(x)), pos(0)) → false
equal_int(neg(s(x)), pos(0)) → false
mod_nat(0, s(x)) → 0
mod_nat(s(x), s(y)) → if(greatereq_int(pos(x), pos(y)), mod_nat(minus_nat_s(x, y), s(y)), s(x))
greatereq_int(pos(x), pos(0)) → true
greatereq_int(pos(0), pos(s(y))) → false
greatereq_int(pos(s(x)), pos(s(y))) → greatereq_int(pos(x), pos(y))
minus_nat_s(x, 0) → x
minus_nat_s(0, s(y)) → 0
minus_nat_s(s(x), s(y)) → minus_nat_s(x, y)
if(true, x, y) → x
if(false, x, y) → y
mult_nat(s(x), 0) → 0
mult_nat(s(x), s(y)) → plus_nat(mult_nat(x, s(y)), s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
mult_nat(0, y) → 0
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
greater_int(pos(0), pos(0)) → false
greater_int(pos(s(x)), pos(0)) → true

The set Q consists of the following terms:

plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
mult_nat(0, x0)
mult_nat(s(x0), 0)
mult_nat(s(x0), s(x1))
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
if(true, x0, x1)
if(false, x0, x1)
minus_nat_s(x0, 0)
minus_nat_s(0, s(x0))
minus_nat_s(s(x0), s(x1))
equal_int(pos(0), pos(0))
equal_int(neg(0), pos(0))
equal_int(neg(0), neg(0))
equal_int(pos(0), neg(0))
equal_int(pos(0), pos(s(x0)))
equal_int(neg(0), pos(s(x0)))
equal_int(pos(0), neg(s(x0)))
equal_int(neg(0), neg(s(x0)))
equal_int(pos(s(x0)), pos(0))
equal_int(pos(s(x0)), neg(0))
equal_int(neg(s(x0)), pos(0))
equal_int(neg(s(x0)), neg(0))
equal_int(pos(s(x0)), neg(s(x1)))
equal_int(neg(s(x0)), pos(s(x1)))
equal_int(pos(s(x0)), pos(s(x1)))
equal_int(neg(s(x0)), neg(s(x1)))
mod_int(pos(x0), pos(x1))
mod_int(pos(x0), neg(x1))
mod_int(neg(x0), pos(x1))
mod_int(neg(x0), neg(x1))
mod_nat(0, s(x0))
mod_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
By narrowing [LPAR04] the rule F(pos(s(x0))) → COND1(greater_int(pos(x0), pos(0)), pos(s(x0))) at position [0] we obtained the following new rules [LPAR04]:

F(pos(s(s(x0)))) → COND1(true, pos(s(s(x0))))
F(pos(s(0))) → COND1(false, pos(s(0)))



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ QDPOrderProof
                          ↳ QDP
                            ↳ UsableRulesProof
                              ↳ QDP
                                ↳ QReductionProof
                                  ↳ QDP
                                    ↳ RemovalProof
                                    ↳ RemovalProof
                                    ↳ Narrowing
                                      ↳ QDP
                                        ↳ DependencyGraphProof
                                          ↳ QDP
                                            ↳ UsableRulesProof
                                              ↳ QDP
                                                ↳ Narrowing
                                                  ↳ QDP
                                                    ↳ UsableRulesProof
                                                      ↳ QDP
                                                        ↳ QReductionProof
                                                          ↳ QDP
                                                            ↳ Rewriting
                                                              ↳ QDP
                                                                ↳ UsableRulesProof
                                                                  ↳ QDP
                                                                    ↳ Rewriting
                                                                      ↳ QDP
                                                                        ↳ UsableRulesProof
                                                                          ↳ QDP
                                                                            ↳ QReductionProof
                                                                              ↳ QDP
                                                                                ↳ Rewriting
                                                                                  ↳ QDP
                                                                                    ↳ Rewriting
                                                                                      ↳ QDP
                                                                                        ↳ Narrowing
QDP
                                                                                            ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

COND1(true, x) → COND2(equal_int(mod_int(x, pos(s(s(0)))), pos(0)), x)
COND2(false, neg(x1)) → F(minus_nat(s(0), mult_nat(s(s(s(0))), x1)))
COND2(false, pos(x1)) → F(pos(s(mult_nat(s(s(s(0))), x1))))
F(pos(s(s(x0)))) → COND1(true, pos(s(s(x0))))
F(pos(s(0))) → COND1(false, pos(s(0)))

The TRS R consists of the following rules:

mod_int(pos(x), pos(y)) → pos(mod_nat(x, y))
mod_int(neg(x), pos(y)) → neg(mod_nat(x, y))
equal_int(pos(0), pos(0)) → true
equal_int(neg(0), pos(0)) → true
equal_int(pos(s(x)), pos(0)) → false
equal_int(neg(s(x)), pos(0)) → false
mod_nat(0, s(x)) → 0
mod_nat(s(x), s(y)) → if(greatereq_int(pos(x), pos(y)), mod_nat(minus_nat_s(x, y), s(y)), s(x))
greatereq_int(pos(x), pos(0)) → true
greatereq_int(pos(0), pos(s(y))) → false
greatereq_int(pos(s(x)), pos(s(y))) → greatereq_int(pos(x), pos(y))
minus_nat_s(x, 0) → x
minus_nat_s(0, s(y)) → 0
minus_nat_s(s(x), s(y)) → minus_nat_s(x, y)
if(true, x, y) → x
if(false, x, y) → y
mult_nat(s(x), 0) → 0
mult_nat(s(x), s(y)) → plus_nat(mult_nat(x, s(y)), s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
mult_nat(0, y) → 0
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
greater_int(pos(0), pos(0)) → false
greater_int(pos(s(x)), pos(0)) → true

The set Q consists of the following terms:

plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
mult_nat(0, x0)
mult_nat(s(x0), 0)
mult_nat(s(x0), s(x1))
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
if(true, x0, x1)
if(false, x0, x1)
minus_nat_s(x0, 0)
minus_nat_s(0, s(x0))
minus_nat_s(s(x0), s(x1))
equal_int(pos(0), pos(0))
equal_int(neg(0), pos(0))
equal_int(neg(0), neg(0))
equal_int(pos(0), neg(0))
equal_int(pos(0), pos(s(x0)))
equal_int(neg(0), pos(s(x0)))
equal_int(pos(0), neg(s(x0)))
equal_int(neg(0), neg(s(x0)))
equal_int(pos(s(x0)), pos(0))
equal_int(pos(s(x0)), neg(0))
equal_int(neg(s(x0)), pos(0))
equal_int(neg(s(x0)), neg(0))
equal_int(pos(s(x0)), neg(s(x1)))
equal_int(neg(s(x0)), pos(s(x1)))
equal_int(pos(s(x0)), pos(s(x1)))
equal_int(neg(s(x0)), neg(s(x1)))
mod_int(pos(x0), pos(x1))
mod_int(pos(x0), neg(x1))
mod_int(neg(x0), pos(x1))
mod_int(neg(x0), neg(x1))
mod_nat(0, s(x0))
mod_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node.

↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ QDPOrderProof
                          ↳ QDP
                            ↳ UsableRulesProof
                              ↳ QDP
                                ↳ QReductionProof
                                  ↳ QDP
                                    ↳ RemovalProof
                                    ↳ RemovalProof
                                    ↳ Narrowing
                                      ↳ QDP
                                        ↳ DependencyGraphProof
                                          ↳ QDP
                                            ↳ UsableRulesProof
                                              ↳ QDP
                                                ↳ Narrowing
                                                  ↳ QDP
                                                    ↳ UsableRulesProof
                                                      ↳ QDP
                                                        ↳ QReductionProof
                                                          ↳ QDP
                                                            ↳ Rewriting
                                                              ↳ QDP
                                                                ↳ UsableRulesProof
                                                                  ↳ QDP
                                                                    ↳ Rewriting
                                                                      ↳ QDP
                                                                        ↳ UsableRulesProof
                                                                          ↳ QDP
                                                                            ↳ QReductionProof
                                                                              ↳ QDP
                                                                                ↳ Rewriting
                                                                                  ↳ QDP
                                                                                    ↳ Rewriting
                                                                                      ↳ QDP
                                                                                        ↳ Narrowing
                                                                                          ↳ QDP
                                                                                            ↳ DependencyGraphProof
QDP
                                                                                                ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

COND2(false, neg(x1)) → F(minus_nat(s(0), mult_nat(s(s(s(0))), x1)))
F(pos(s(s(x0)))) → COND1(true, pos(s(s(x0))))
COND1(true, x) → COND2(equal_int(mod_int(x, pos(s(s(0)))), pos(0)), x)
COND2(false, pos(x1)) → F(pos(s(mult_nat(s(s(s(0))), x1))))

The TRS R consists of the following rules:

mod_int(pos(x), pos(y)) → pos(mod_nat(x, y))
mod_int(neg(x), pos(y)) → neg(mod_nat(x, y))
equal_int(pos(0), pos(0)) → true
equal_int(neg(0), pos(0)) → true
equal_int(pos(s(x)), pos(0)) → false
equal_int(neg(s(x)), pos(0)) → false
mod_nat(0, s(x)) → 0
mod_nat(s(x), s(y)) → if(greatereq_int(pos(x), pos(y)), mod_nat(minus_nat_s(x, y), s(y)), s(x))
greatereq_int(pos(x), pos(0)) → true
greatereq_int(pos(0), pos(s(y))) → false
greatereq_int(pos(s(x)), pos(s(y))) → greatereq_int(pos(x), pos(y))
minus_nat_s(x, 0) → x
minus_nat_s(0, s(y)) → 0
minus_nat_s(s(x), s(y)) → minus_nat_s(x, y)
if(true, x, y) → x
if(false, x, y) → y
mult_nat(s(x), 0) → 0
mult_nat(s(x), s(y)) → plus_nat(mult_nat(x, s(y)), s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
mult_nat(0, y) → 0
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
greater_int(pos(0), pos(0)) → false
greater_int(pos(s(x)), pos(0)) → true

The set Q consists of the following terms:

plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
mult_nat(0, x0)
mult_nat(s(x0), 0)
mult_nat(s(x0), s(x1))
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
if(true, x0, x1)
if(false, x0, x1)
minus_nat_s(x0, 0)
minus_nat_s(0, s(x0))
minus_nat_s(s(x0), s(x1))
equal_int(pos(0), pos(0))
equal_int(neg(0), pos(0))
equal_int(neg(0), neg(0))
equal_int(pos(0), neg(0))
equal_int(pos(0), pos(s(x0)))
equal_int(neg(0), pos(s(x0)))
equal_int(pos(0), neg(s(x0)))
equal_int(neg(0), neg(s(x0)))
equal_int(pos(s(x0)), pos(0))
equal_int(pos(s(x0)), neg(0))
equal_int(neg(s(x0)), pos(0))
equal_int(neg(s(x0)), neg(0))
equal_int(pos(s(x0)), neg(s(x1)))
equal_int(neg(s(x0)), pos(s(x1)))
equal_int(pos(s(x0)), pos(s(x1)))
equal_int(neg(s(x0)), neg(s(x1)))
mod_int(pos(x0), pos(x1))
mod_int(pos(x0), neg(x1))
mod_int(neg(x0), pos(x1))
mod_int(neg(x0), neg(x1))
mod_nat(0, s(x0))
mod_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.

↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ QDPOrderProof
                          ↳ QDP
                            ↳ UsableRulesProof
                              ↳ QDP
                                ↳ QReductionProof
                                  ↳ QDP
                                    ↳ RemovalProof
                                    ↳ RemovalProof
                                    ↳ Narrowing
                                      ↳ QDP
                                        ↳ DependencyGraphProof
                                          ↳ QDP
                                            ↳ UsableRulesProof
                                              ↳ QDP
                                                ↳ Narrowing
                                                  ↳ QDP
                                                    ↳ UsableRulesProof
                                                      ↳ QDP
                                                        ↳ QReductionProof
                                                          ↳ QDP
                                                            ↳ Rewriting
                                                              ↳ QDP
                                                                ↳ UsableRulesProof
                                                                  ↳ QDP
                                                                    ↳ Rewriting
                                                                      ↳ QDP
                                                                        ↳ UsableRulesProof
                                                                          ↳ QDP
                                                                            ↳ QReductionProof
                                                                              ↳ QDP
                                                                                ↳ Rewriting
                                                                                  ↳ QDP
                                                                                    ↳ Rewriting
                                                                                      ↳ QDP
                                                                                        ↳ Narrowing
                                                                                          ↳ QDP
                                                                                            ↳ DependencyGraphProof
                                                                                              ↳ QDP
                                                                                                ↳ UsableRulesProof
QDP
                                                                                                    ↳ QReductionProof

Q DP problem:
The TRS P consists of the following rules:

COND2(false, neg(x1)) → F(minus_nat(s(0), mult_nat(s(s(s(0))), x1)))
F(pos(s(s(x0)))) → COND1(true, pos(s(s(x0))))
COND1(true, x) → COND2(equal_int(mod_int(x, pos(s(s(0)))), pos(0)), x)
COND2(false, pos(x1)) → F(pos(s(mult_nat(s(s(s(0))), x1))))

The TRS R consists of the following rules:

mod_int(pos(x), pos(y)) → pos(mod_nat(x, y))
mod_int(neg(x), pos(y)) → neg(mod_nat(x, y))
equal_int(pos(0), pos(0)) → true
equal_int(neg(0), pos(0)) → true
equal_int(pos(s(x)), pos(0)) → false
equal_int(neg(s(x)), pos(0)) → false
mod_nat(0, s(x)) → 0
mod_nat(s(x), s(y)) → if(greatereq_int(pos(x), pos(y)), mod_nat(minus_nat_s(x, y), s(y)), s(x))
greatereq_int(pos(x), pos(0)) → true
greatereq_int(pos(0), pos(s(y))) → false
greatereq_int(pos(s(x)), pos(s(y))) → greatereq_int(pos(x), pos(y))
minus_nat_s(x, 0) → x
minus_nat_s(0, s(y)) → 0
minus_nat_s(s(x), s(y)) → minus_nat_s(x, y)
if(true, x, y) → x
if(false, x, y) → y
mult_nat(s(x), 0) → 0
mult_nat(s(x), s(y)) → plus_nat(mult_nat(x, s(y)), s(y))
mult_nat(0, y) → 0
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))

The set Q consists of the following terms:

plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
mult_nat(0, x0)
mult_nat(s(x0), 0)
mult_nat(s(x0), s(x1))
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
if(true, x0, x1)
if(false, x0, x1)
minus_nat_s(x0, 0)
minus_nat_s(0, s(x0))
minus_nat_s(s(x0), s(x1))
equal_int(pos(0), pos(0))
equal_int(neg(0), pos(0))
equal_int(neg(0), neg(0))
equal_int(pos(0), neg(0))
equal_int(pos(0), pos(s(x0)))
equal_int(neg(0), pos(s(x0)))
equal_int(pos(0), neg(s(x0)))
equal_int(neg(0), neg(s(x0)))
equal_int(pos(s(x0)), pos(0))
equal_int(pos(s(x0)), neg(0))
equal_int(neg(s(x0)), pos(0))
equal_int(neg(s(x0)), neg(0))
equal_int(pos(s(x0)), neg(s(x1)))
equal_int(neg(s(x0)), pos(s(x1)))
equal_int(pos(s(x0)), pos(s(x1)))
equal_int(neg(s(x0)), neg(s(x1)))
mod_int(pos(x0), pos(x1))
mod_int(pos(x0), neg(x1))
mod_int(neg(x0), pos(x1))
mod_int(neg(x0), neg(x1))
mod_nat(0, s(x0))
mod_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].

greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ QDPOrderProof
                          ↳ QDP
                            ↳ UsableRulesProof
                              ↳ QDP
                                ↳ QReductionProof
                                  ↳ QDP
                                    ↳ RemovalProof
                                    ↳ RemovalProof
                                    ↳ Narrowing
                                      ↳ QDP
                                        ↳ DependencyGraphProof
                                          ↳ QDP
                                            ↳ UsableRulesProof
                                              ↳ QDP
                                                ↳ Narrowing
                                                  ↳ QDP
                                                    ↳ UsableRulesProof
                                                      ↳ QDP
                                                        ↳ QReductionProof
                                                          ↳ QDP
                                                            ↳ Rewriting
                                                              ↳ QDP
                                                                ↳ UsableRulesProof
                                                                  ↳ QDP
                                                                    ↳ Rewriting
                                                                      ↳ QDP
                                                                        ↳ UsableRulesProof
                                                                          ↳ QDP
                                                                            ↳ QReductionProof
                                                                              ↳ QDP
                                                                                ↳ Rewriting
                                                                                  ↳ QDP
                                                                                    ↳ Rewriting
                                                                                      ↳ QDP
                                                                                        ↳ Narrowing
                                                                                          ↳ QDP
                                                                                            ↳ DependencyGraphProof
                                                                                              ↳ QDP
                                                                                                ↳ UsableRulesProof
                                                                                                  ↳ QDP
                                                                                                    ↳ QReductionProof
QDP
                                                                                                        ↳ Narrowing

Q DP problem:
The TRS P consists of the following rules:

COND2(false, neg(x1)) → F(minus_nat(s(0), mult_nat(s(s(s(0))), x1)))
F(pos(s(s(x0)))) → COND1(true, pos(s(s(x0))))
COND1(true, x) → COND2(equal_int(mod_int(x, pos(s(s(0)))), pos(0)), x)
COND2(false, pos(x1)) → F(pos(s(mult_nat(s(s(s(0))), x1))))

The TRS R consists of the following rules:

mod_int(pos(x), pos(y)) → pos(mod_nat(x, y))
mod_int(neg(x), pos(y)) → neg(mod_nat(x, y))
equal_int(pos(0), pos(0)) → true
equal_int(neg(0), pos(0)) → true
equal_int(pos(s(x)), pos(0)) → false
equal_int(neg(s(x)), pos(0)) → false
mod_nat(0, s(x)) → 0
mod_nat(s(x), s(y)) → if(greatereq_int(pos(x), pos(y)), mod_nat(minus_nat_s(x, y), s(y)), s(x))
greatereq_int(pos(x), pos(0)) → true
greatereq_int(pos(0), pos(s(y))) → false
greatereq_int(pos(s(x)), pos(s(y))) → greatereq_int(pos(x), pos(y))
minus_nat_s(x, 0) → x
minus_nat_s(0, s(y)) → 0
minus_nat_s(s(x), s(y)) → minus_nat_s(x, y)
if(true, x, y) → x
if(false, x, y) → y
mult_nat(s(x), 0) → 0
mult_nat(s(x), s(y)) → plus_nat(mult_nat(x, s(y)), s(y))
mult_nat(0, y) → 0
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))

The set Q consists of the following terms:

plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
mult_nat(0, x0)
mult_nat(s(x0), 0)
mult_nat(s(x0), s(x1))
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
if(true, x0, x1)
if(false, x0, x1)
minus_nat_s(x0, 0)
minus_nat_s(0, s(x0))
minus_nat_s(s(x0), s(x1))
equal_int(pos(0), pos(0))
equal_int(neg(0), pos(0))
equal_int(neg(0), neg(0))
equal_int(pos(0), neg(0))
equal_int(pos(0), pos(s(x0)))
equal_int(neg(0), pos(s(x0)))
equal_int(pos(0), neg(s(x0)))
equal_int(neg(0), neg(s(x0)))
equal_int(pos(s(x0)), pos(0))
equal_int(pos(s(x0)), neg(0))
equal_int(neg(s(x0)), pos(0))
equal_int(neg(s(x0)), neg(0))
equal_int(pos(s(x0)), neg(s(x1)))
equal_int(neg(s(x0)), pos(s(x1)))
equal_int(pos(s(x0)), pos(s(x1)))
equal_int(neg(s(x0)), neg(s(x1)))
mod_int(pos(x0), pos(x1))
mod_int(pos(x0), neg(x1))
mod_int(neg(x0), pos(x1))
mod_int(neg(x0), neg(x1))
mod_nat(0, s(x0))
mod_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
By narrowing [LPAR04] the rule COND1(true, x) → COND2(equal_int(mod_int(x, pos(s(s(0)))), pos(0)), x) at position [0] we obtained the following new rules [LPAR04]:

COND1(true, pos(x0)) → COND2(equal_int(pos(mod_nat(x0, s(s(0)))), pos(0)), pos(x0))
COND1(true, neg(x0)) → COND2(equal_int(neg(mod_nat(x0, s(s(0)))), pos(0)), neg(x0))



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ QDPOrderProof
                          ↳ QDP
                            ↳ UsableRulesProof
                              ↳ QDP
                                ↳ QReductionProof
                                  ↳ QDP
                                    ↳ RemovalProof
                                    ↳ RemovalProof
                                    ↳ Narrowing
                                      ↳ QDP
                                        ↳ DependencyGraphProof
                                          ↳ QDP
                                            ↳ UsableRulesProof
                                              ↳ QDP
                                                ↳ Narrowing
                                                  ↳ QDP
                                                    ↳ UsableRulesProof
                                                      ↳ QDP
                                                        ↳ QReductionProof
                                                          ↳ QDP
                                                            ↳ Rewriting
                                                              ↳ QDP
                                                                ↳ UsableRulesProof
                                                                  ↳ QDP
                                                                    ↳ Rewriting
                                                                      ↳ QDP
                                                                        ↳ UsableRulesProof
                                                                          ↳ QDP
                                                                            ↳ QReductionProof
                                                                              ↳ QDP
                                                                                ↳ Rewriting
                                                                                  ↳ QDP
                                                                                    ↳ Rewriting
                                                                                      ↳ QDP
                                                                                        ↳ Narrowing
                                                                                          ↳ QDP
                                                                                            ↳ DependencyGraphProof
                                                                                              ↳ QDP
                                                                                                ↳ UsableRulesProof
                                                                                                  ↳ QDP
                                                                                                    ↳ QReductionProof
                                                                                                      ↳ QDP
                                                                                                        ↳ Narrowing
QDP
                                                                                                            ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

COND2(false, neg(x1)) → F(minus_nat(s(0), mult_nat(s(s(s(0))), x1)))
F(pos(s(s(x0)))) → COND1(true, pos(s(s(x0))))
COND2(false, pos(x1)) → F(pos(s(mult_nat(s(s(s(0))), x1))))
COND1(true, pos(x0)) → COND2(equal_int(pos(mod_nat(x0, s(s(0)))), pos(0)), pos(x0))
COND1(true, neg(x0)) → COND2(equal_int(neg(mod_nat(x0, s(s(0)))), pos(0)), neg(x0))

The TRS R consists of the following rules:

mod_int(pos(x), pos(y)) → pos(mod_nat(x, y))
mod_int(neg(x), pos(y)) → neg(mod_nat(x, y))
equal_int(pos(0), pos(0)) → true
equal_int(neg(0), pos(0)) → true
equal_int(pos(s(x)), pos(0)) → false
equal_int(neg(s(x)), pos(0)) → false
mod_nat(0, s(x)) → 0
mod_nat(s(x), s(y)) → if(greatereq_int(pos(x), pos(y)), mod_nat(minus_nat_s(x, y), s(y)), s(x))
greatereq_int(pos(x), pos(0)) → true
greatereq_int(pos(0), pos(s(y))) → false
greatereq_int(pos(s(x)), pos(s(y))) → greatereq_int(pos(x), pos(y))
minus_nat_s(x, 0) → x
minus_nat_s(0, s(y)) → 0
minus_nat_s(s(x), s(y)) → minus_nat_s(x, y)
if(true, x, y) → x
if(false, x, y) → y
mult_nat(s(x), 0) → 0
mult_nat(s(x), s(y)) → plus_nat(mult_nat(x, s(y)), s(y))
mult_nat(0, y) → 0
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))

The set Q consists of the following terms:

plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
mult_nat(0, x0)
mult_nat(s(x0), 0)
mult_nat(s(x0), s(x1))
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
if(true, x0, x1)
if(false, x0, x1)
minus_nat_s(x0, 0)
minus_nat_s(0, s(x0))
minus_nat_s(s(x0), s(x1))
equal_int(pos(0), pos(0))
equal_int(neg(0), pos(0))
equal_int(neg(0), neg(0))
equal_int(pos(0), neg(0))
equal_int(pos(0), pos(s(x0)))
equal_int(neg(0), pos(s(x0)))
equal_int(pos(0), neg(s(x0)))
equal_int(neg(0), neg(s(x0)))
equal_int(pos(s(x0)), pos(0))
equal_int(pos(s(x0)), neg(0))
equal_int(neg(s(x0)), pos(0))
equal_int(neg(s(x0)), neg(0))
equal_int(pos(s(x0)), neg(s(x1)))
equal_int(neg(s(x0)), pos(s(x1)))
equal_int(pos(s(x0)), pos(s(x1)))
equal_int(neg(s(x0)), neg(s(x1)))
mod_int(pos(x0), pos(x1))
mod_int(pos(x0), neg(x1))
mod_int(neg(x0), pos(x1))
mod_int(neg(x0), neg(x1))
mod_nat(0, s(x0))
mod_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 2 less nodes.

↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ QDPOrderProof
                          ↳ QDP
                            ↳ UsableRulesProof
                              ↳ QDP
                                ↳ QReductionProof
                                  ↳ QDP
                                    ↳ RemovalProof
                                    ↳ RemovalProof
                                    ↳ Narrowing
                                      ↳ QDP
                                        ↳ DependencyGraphProof
                                          ↳ QDP
                                            ↳ UsableRulesProof
                                              ↳ QDP
                                                ↳ Narrowing
                                                  ↳ QDP
                                                    ↳ UsableRulesProof
                                                      ↳ QDP
                                                        ↳ QReductionProof
                                                          ↳ QDP
                                                            ↳ Rewriting
                                                              ↳ QDP
                                                                ↳ UsableRulesProof
                                                                  ↳ QDP
                                                                    ↳ Rewriting
                                                                      ↳ QDP
                                                                        ↳ UsableRulesProof
                                                                          ↳ QDP
                                                                            ↳ QReductionProof
                                                                              ↳ QDP
                                                                                ↳ Rewriting
                                                                                  ↳ QDP
                                                                                    ↳ Rewriting
                                                                                      ↳ QDP
                                                                                        ↳ Narrowing
                                                                                          ↳ QDP
                                                                                            ↳ DependencyGraphProof
                                                                                              ↳ QDP
                                                                                                ↳ UsableRulesProof
                                                                                                  ↳ QDP
                                                                                                    ↳ QReductionProof
                                                                                                      ↳ QDP
                                                                                                        ↳ Narrowing
                                                                                                          ↳ QDP
                                                                                                            ↳ DependencyGraphProof
QDP
                                                                                                                ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

COND1(true, pos(x0)) → COND2(equal_int(pos(mod_nat(x0, s(s(0)))), pos(0)), pos(x0))
COND2(false, pos(x1)) → F(pos(s(mult_nat(s(s(s(0))), x1))))
F(pos(s(s(x0)))) → COND1(true, pos(s(s(x0))))

The TRS R consists of the following rules:

mod_int(pos(x), pos(y)) → pos(mod_nat(x, y))
mod_int(neg(x), pos(y)) → neg(mod_nat(x, y))
equal_int(pos(0), pos(0)) → true
equal_int(neg(0), pos(0)) → true
equal_int(pos(s(x)), pos(0)) → false
equal_int(neg(s(x)), pos(0)) → false
mod_nat(0, s(x)) → 0
mod_nat(s(x), s(y)) → if(greatereq_int(pos(x), pos(y)), mod_nat(minus_nat_s(x, y), s(y)), s(x))
greatereq_int(pos(x), pos(0)) → true
greatereq_int(pos(0), pos(s(y))) → false
greatereq_int(pos(s(x)), pos(s(y))) → greatereq_int(pos(x), pos(y))
minus_nat_s(x, 0) → x
minus_nat_s(0, s(y)) → 0
minus_nat_s(s(x), s(y)) → minus_nat_s(x, y)
if(true, x, y) → x
if(false, x, y) → y
mult_nat(s(x), 0) → 0
mult_nat(s(x), s(y)) → plus_nat(mult_nat(x, s(y)), s(y))
mult_nat(0, y) → 0
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))

The set Q consists of the following terms:

plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
mult_nat(0, x0)
mult_nat(s(x0), 0)
mult_nat(s(x0), s(x1))
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
if(true, x0, x1)
if(false, x0, x1)
minus_nat_s(x0, 0)
minus_nat_s(0, s(x0))
minus_nat_s(s(x0), s(x1))
equal_int(pos(0), pos(0))
equal_int(neg(0), pos(0))
equal_int(neg(0), neg(0))
equal_int(pos(0), neg(0))
equal_int(pos(0), pos(s(x0)))
equal_int(neg(0), pos(s(x0)))
equal_int(pos(0), neg(s(x0)))
equal_int(neg(0), neg(s(x0)))
equal_int(pos(s(x0)), pos(0))
equal_int(pos(s(x0)), neg(0))
equal_int(neg(s(x0)), pos(0))
equal_int(neg(s(x0)), neg(0))
equal_int(pos(s(x0)), neg(s(x1)))
equal_int(neg(s(x0)), pos(s(x1)))
equal_int(pos(s(x0)), pos(s(x1)))
equal_int(neg(s(x0)), neg(s(x1)))
mod_int(pos(x0), pos(x1))
mod_int(pos(x0), neg(x1))
mod_int(neg(x0), pos(x1))
mod_int(neg(x0), neg(x1))
mod_nat(0, s(x0))
mod_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.

↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ QDPOrderProof
                          ↳ QDP
                            ↳ UsableRulesProof
                              ↳ QDP
                                ↳ QReductionProof
                                  ↳ QDP
                                    ↳ RemovalProof
                                    ↳ RemovalProof
                                    ↳ Narrowing
                                      ↳ QDP
                                        ↳ DependencyGraphProof
                                          ↳ QDP
                                            ↳ UsableRulesProof
                                              ↳ QDP
                                                ↳ Narrowing
                                                  ↳ QDP
                                                    ↳ UsableRulesProof
                                                      ↳ QDP
                                                        ↳ QReductionProof
                                                          ↳ QDP
                                                            ↳ Rewriting
                                                              ↳ QDP
                                                                ↳ UsableRulesProof
                                                                  ↳ QDP
                                                                    ↳ Rewriting
                                                                      ↳ QDP
                                                                        ↳ UsableRulesProof
                                                                          ↳ QDP
                                                                            ↳ QReductionProof
                                                                              ↳ QDP
                                                                                ↳ Rewriting
                                                                                  ↳ QDP
                                                                                    ↳ Rewriting
                                                                                      ↳ QDP
                                                                                        ↳ Narrowing
                                                                                          ↳ QDP
                                                                                            ↳ DependencyGraphProof
                                                                                              ↳ QDP
                                                                                                ↳ UsableRulesProof
                                                                                                  ↳ QDP
                                                                                                    ↳ QReductionProof
                                                                                                      ↳ QDP
                                                                                                        ↳ Narrowing
                                                                                                          ↳ QDP
                                                                                                            ↳ DependencyGraphProof
                                                                                                              ↳ QDP
                                                                                                                ↳ UsableRulesProof
QDP
                                                                                                                    ↳ QReductionProof

Q DP problem:
The TRS P consists of the following rules:

COND1(true, pos(x0)) → COND2(equal_int(pos(mod_nat(x0, s(s(0)))), pos(0)), pos(x0))
COND2(false, pos(x1)) → F(pos(s(mult_nat(s(s(s(0))), x1))))
F(pos(s(s(x0)))) → COND1(true, pos(s(s(x0))))

The TRS R consists of the following rules:

mod_nat(0, s(x)) → 0
mod_nat(s(x), s(y)) → if(greatereq_int(pos(x), pos(y)), mod_nat(minus_nat_s(x, y), s(y)), s(x))
equal_int(pos(0), pos(0)) → true
equal_int(pos(s(x)), pos(0)) → false
greatereq_int(pos(x), pos(0)) → true
greatereq_int(pos(0), pos(s(y))) → false
greatereq_int(pos(s(x)), pos(s(y))) → greatereq_int(pos(x), pos(y))
minus_nat_s(x, 0) → x
minus_nat_s(0, s(y)) → 0
minus_nat_s(s(x), s(y)) → minus_nat_s(x, y)
if(true, x, y) → x
if(false, x, y) → y
mult_nat(s(x), 0) → 0
mult_nat(s(x), s(y)) → plus_nat(mult_nat(x, s(y)), s(y))
mult_nat(0, y) → 0
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))

The set Q consists of the following terms:

plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
mult_nat(0, x0)
mult_nat(s(x0), 0)
mult_nat(s(x0), s(x1))
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
if(true, x0, x1)
if(false, x0, x1)
minus_nat_s(x0, 0)
minus_nat_s(0, s(x0))
minus_nat_s(s(x0), s(x1))
equal_int(pos(0), pos(0))
equal_int(neg(0), pos(0))
equal_int(neg(0), neg(0))
equal_int(pos(0), neg(0))
equal_int(pos(0), pos(s(x0)))
equal_int(neg(0), pos(s(x0)))
equal_int(pos(0), neg(s(x0)))
equal_int(neg(0), neg(s(x0)))
equal_int(pos(s(x0)), pos(0))
equal_int(pos(s(x0)), neg(0))
equal_int(neg(s(x0)), pos(0))
equal_int(neg(s(x0)), neg(0))
equal_int(pos(s(x0)), neg(s(x1)))
equal_int(neg(s(x0)), pos(s(x1)))
equal_int(pos(s(x0)), pos(s(x1)))
equal_int(neg(s(x0)), neg(s(x1)))
mod_int(pos(x0), pos(x1))
mod_int(pos(x0), neg(x1))
mod_int(neg(x0), pos(x1))
mod_int(neg(x0), neg(x1))
mod_nat(0, s(x0))
mod_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].

minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
mod_int(pos(x0), pos(x1))
mod_int(pos(x0), neg(x1))
mod_int(neg(x0), pos(x1))
mod_int(neg(x0), neg(x1))



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ QDPOrderProof
                          ↳ QDP
                            ↳ UsableRulesProof
                              ↳ QDP
                                ↳ QReductionProof
                                  ↳ QDP
                                    ↳ RemovalProof
                                    ↳ RemovalProof
                                    ↳ Narrowing
                                      ↳ QDP
                                        ↳ DependencyGraphProof
                                          ↳ QDP
                                            ↳ UsableRulesProof
                                              ↳ QDP
                                                ↳ Narrowing
                                                  ↳ QDP
                                                    ↳ UsableRulesProof
                                                      ↳ QDP
                                                        ↳ QReductionProof
                                                          ↳ QDP
                                                            ↳ Rewriting
                                                              ↳ QDP
                                                                ↳ UsableRulesProof
                                                                  ↳ QDP
                                                                    ↳ Rewriting
                                                                      ↳ QDP
                                                                        ↳ UsableRulesProof
                                                                          ↳ QDP
                                                                            ↳ QReductionProof
                                                                              ↳ QDP
                                                                                ↳ Rewriting
                                                                                  ↳ QDP
                                                                                    ↳ Rewriting
                                                                                      ↳ QDP
                                                                                        ↳ Narrowing
                                                                                          ↳ QDP
                                                                                            ↳ DependencyGraphProof
                                                                                              ↳ QDP
                                                                                                ↳ UsableRulesProof
                                                                                                  ↳ QDP
                                                                                                    ↳ QReductionProof
                                                                                                      ↳ QDP
                                                                                                        ↳ Narrowing
                                                                                                          ↳ QDP
                                                                                                            ↳ DependencyGraphProof
                                                                                                              ↳ QDP
                                                                                                                ↳ UsableRulesProof
                                                                                                                  ↳ QDP
                                                                                                                    ↳ QReductionProof
QDP
                                                                                                                        ↳ Instantiation

Q DP problem:
The TRS P consists of the following rules:

COND1(true, pos(x0)) → COND2(equal_int(pos(mod_nat(x0, s(s(0)))), pos(0)), pos(x0))
COND2(false, pos(x1)) → F(pos(s(mult_nat(s(s(s(0))), x1))))
F(pos(s(s(x0)))) → COND1(true, pos(s(s(x0))))

The TRS R consists of the following rules:

mod_nat(0, s(x)) → 0
mod_nat(s(x), s(y)) → if(greatereq_int(pos(x), pos(y)), mod_nat(minus_nat_s(x, y), s(y)), s(x))
equal_int(pos(0), pos(0)) → true
equal_int(pos(s(x)), pos(0)) → false
greatereq_int(pos(x), pos(0)) → true
greatereq_int(pos(0), pos(s(y))) → false
greatereq_int(pos(s(x)), pos(s(y))) → greatereq_int(pos(x), pos(y))
minus_nat_s(x, 0) → x
minus_nat_s(0, s(y)) → 0
minus_nat_s(s(x), s(y)) → minus_nat_s(x, y)
if(true, x, y) → x
if(false, x, y) → y
mult_nat(s(x), 0) → 0
mult_nat(s(x), s(y)) → plus_nat(mult_nat(x, s(y)), s(y))
mult_nat(0, y) → 0
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))

The set Q consists of the following terms:

plus_nat(0, x0)
plus_nat(s(x0), x1)
mult_nat(0, x0)
mult_nat(s(x0), 0)
mult_nat(s(x0), s(x1))
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
if(true, x0, x1)
if(false, x0, x1)
minus_nat_s(x0, 0)
minus_nat_s(0, s(x0))
minus_nat_s(s(x0), s(x1))
equal_int(pos(0), pos(0))
equal_int(neg(0), pos(0))
equal_int(neg(0), neg(0))
equal_int(pos(0), neg(0))
equal_int(pos(0), pos(s(x0)))
equal_int(neg(0), pos(s(x0)))
equal_int(pos(0), neg(s(x0)))
equal_int(neg(0), neg(s(x0)))
equal_int(pos(s(x0)), pos(0))
equal_int(pos(s(x0)), neg(0))
equal_int(neg(s(x0)), pos(0))
equal_int(neg(s(x0)), neg(0))
equal_int(pos(s(x0)), neg(s(x1)))
equal_int(neg(s(x0)), pos(s(x1)))
equal_int(pos(s(x0)), pos(s(x1)))
equal_int(neg(s(x0)), neg(s(x1)))
mod_nat(0, s(x0))
mod_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
By instantiating [LPAR04] the rule COND1(true, pos(x0)) → COND2(equal_int(pos(mod_nat(x0, s(s(0)))), pos(0)), pos(x0)) we obtained the following new rules [LPAR04]:

COND1(true, pos(s(s(z0)))) → COND2(equal_int(pos(mod_nat(s(s(z0)), s(s(0)))), pos(0)), pos(s(s(z0))))



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ QDPOrderProof
                          ↳ QDP
                            ↳ UsableRulesProof
                              ↳ QDP
                                ↳ QReductionProof
                                  ↳ QDP
                                    ↳ RemovalProof
                                    ↳ RemovalProof
                                    ↳ Narrowing
                                      ↳ QDP
                                        ↳ DependencyGraphProof
                                          ↳ QDP
                                            ↳ UsableRulesProof
                                              ↳ QDP
                                                ↳ Narrowing
                                                  ↳ QDP
                                                    ↳ UsableRulesProof
                                                      ↳ QDP
                                                        ↳ QReductionProof
                                                          ↳ QDP
                                                            ↳ Rewriting
                                                              ↳ QDP
                                                                ↳ UsableRulesProof
                                                                  ↳ QDP
                                                                    ↳ Rewriting
                                                                      ↳ QDP
                                                                        ↳ UsableRulesProof
                                                                          ↳ QDP
                                                                            ↳ QReductionProof
                                                                              ↳ QDP
                                                                                ↳ Rewriting
                                                                                  ↳ QDP
                                                                                    ↳ Rewriting
                                                                                      ↳ QDP
                                                                                        ↳ Narrowing
                                                                                          ↳ QDP
                                                                                            ↳ DependencyGraphProof
                                                                                              ↳ QDP
                                                                                                ↳ UsableRulesProof
                                                                                                  ↳ QDP
                                                                                                    ↳ QReductionProof
                                                                                                      ↳ QDP
                                                                                                        ↳ Narrowing
                                                                                                          ↳ QDP
                                                                                                            ↳ DependencyGraphProof
                                                                                                              ↳ QDP
                                                                                                                ↳ UsableRulesProof
                                                                                                                  ↳ QDP
                                                                                                                    ↳ QReductionProof
                                                                                                                      ↳ QDP
                                                                                                                        ↳ Instantiation
QDP
                                                                                                                            ↳ Rewriting

Q DP problem:
The TRS P consists of the following rules:

COND2(false, pos(x1)) → F(pos(s(mult_nat(s(s(s(0))), x1))))
F(pos(s(s(x0)))) → COND1(true, pos(s(s(x0))))
COND1(true, pos(s(s(z0)))) → COND2(equal_int(pos(mod_nat(s(s(z0)), s(s(0)))), pos(0)), pos(s(s(z0))))

The TRS R consists of the following rules:

mod_nat(0, s(x)) → 0
mod_nat(s(x), s(y)) → if(greatereq_int(pos(x), pos(y)), mod_nat(minus_nat_s(x, y), s(y)), s(x))
equal_int(pos(0), pos(0)) → true
equal_int(pos(s(x)), pos(0)) → false
greatereq_int(pos(x), pos(0)) → true
greatereq_int(pos(0), pos(s(y))) → false
greatereq_int(pos(s(x)), pos(s(y))) → greatereq_int(pos(x), pos(y))
minus_nat_s(x, 0) → x
minus_nat_s(0, s(y)) → 0
minus_nat_s(s(x), s(y)) → minus_nat_s(x, y)
if(true, x, y) → x
if(false, x, y) → y
mult_nat(s(x), 0) → 0
mult_nat(s(x), s(y)) → plus_nat(mult_nat(x, s(y)), s(y))
mult_nat(0, y) → 0
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))

The set Q consists of the following terms:

plus_nat(0, x0)
plus_nat(s(x0), x1)
mult_nat(0, x0)
mult_nat(s(x0), 0)
mult_nat(s(x0), s(x1))
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
if(true, x0, x1)
if(false, x0, x1)
minus_nat_s(x0, 0)
minus_nat_s(0, s(x0))
minus_nat_s(s(x0), s(x1))
equal_int(pos(0), pos(0))
equal_int(neg(0), pos(0))
equal_int(neg(0), neg(0))
equal_int(pos(0), neg(0))
equal_int(pos(0), pos(s(x0)))
equal_int(neg(0), pos(s(x0)))
equal_int(pos(0), neg(s(x0)))
equal_int(neg(0), neg(s(x0)))
equal_int(pos(s(x0)), pos(0))
equal_int(pos(s(x0)), neg(0))
equal_int(neg(s(x0)), pos(0))
equal_int(neg(s(x0)), neg(0))
equal_int(pos(s(x0)), neg(s(x1)))
equal_int(neg(s(x0)), pos(s(x1)))
equal_int(pos(s(x0)), pos(s(x1)))
equal_int(neg(s(x0)), neg(s(x1)))
mod_nat(0, s(x0))
mod_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
By rewriting [LPAR04] the rule COND1(true, pos(s(s(z0)))) → COND2(equal_int(pos(mod_nat(s(s(z0)), s(s(0)))), pos(0)), pos(s(s(z0)))) at position [0,0,0] we obtained the following new rules [LPAR04]:

COND1(true, pos(s(s(z0)))) → COND2(equal_int(pos(if(greatereq_int(pos(s(z0)), pos(s(0))), mod_nat(minus_nat_s(s(z0), s(0)), s(s(0))), s(s(z0)))), pos(0)), pos(s(s(z0))))



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ QDPOrderProof
                          ↳ QDP
                            ↳ UsableRulesProof
                              ↳ QDP
                                ↳ QReductionProof
                                  ↳ QDP
                                    ↳ RemovalProof
                                    ↳ RemovalProof
                                    ↳ Narrowing
                                      ↳ QDP
                                        ↳ DependencyGraphProof
                                          ↳ QDP
                                            ↳ UsableRulesProof
                                              ↳ QDP
                                                ↳ Narrowing
                                                  ↳ QDP
                                                    ↳ UsableRulesProof
                                                      ↳ QDP
                                                        ↳ QReductionProof
                                                          ↳ QDP
                                                            ↳ Rewriting
                                                              ↳ QDP
                                                                ↳ UsableRulesProof
                                                                  ↳ QDP
                                                                    ↳ Rewriting
                                                                      ↳ QDP
                                                                        ↳ UsableRulesProof
                                                                          ↳ QDP
                                                                            ↳ QReductionProof
                                                                              ↳ QDP
                                                                                ↳ Rewriting
                                                                                  ↳ QDP
                                                                                    ↳ Rewriting
                                                                                      ↳ QDP
                                                                                        ↳ Narrowing
                                                                                          ↳ QDP
                                                                                            ↳ DependencyGraphProof
                                                                                              ↳ QDP
                                                                                                ↳ UsableRulesProof
                                                                                                  ↳ QDP
                                                                                                    ↳ QReductionProof
                                                                                                      ↳ QDP
                                                                                                        ↳ Narrowing
                                                                                                          ↳ QDP
                                                                                                            ↳ DependencyGraphProof
                                                                                                              ↳ QDP
                                                                                                                ↳ UsableRulesProof
                                                                                                                  ↳ QDP
                                                                                                                    ↳ QReductionProof
                                                                                                                      ↳ QDP
                                                                                                                        ↳ Instantiation
                                                                                                                          ↳ QDP
                                                                                                                            ↳ Rewriting
QDP
                                                                                                                                ↳ Rewriting

Q DP problem:
The TRS P consists of the following rules:

COND2(false, pos(x1)) → F(pos(s(mult_nat(s(s(s(0))), x1))))
F(pos(s(s(x0)))) → COND1(true, pos(s(s(x0))))
COND1(true, pos(s(s(z0)))) → COND2(equal_int(pos(if(greatereq_int(pos(s(z0)), pos(s(0))), mod_nat(minus_nat_s(s(z0), s(0)), s(s(0))), s(s(z0)))), pos(0)), pos(s(s(z0))))

The TRS R consists of the following rules:

mod_nat(0, s(x)) → 0
mod_nat(s(x), s(y)) → if(greatereq_int(pos(x), pos(y)), mod_nat(minus_nat_s(x, y), s(y)), s(x))
equal_int(pos(0), pos(0)) → true
equal_int(pos(s(x)), pos(0)) → false
greatereq_int(pos(x), pos(0)) → true
greatereq_int(pos(0), pos(s(y))) → false
greatereq_int(pos(s(x)), pos(s(y))) → greatereq_int(pos(x), pos(y))
minus_nat_s(x, 0) → x
minus_nat_s(0, s(y)) → 0
minus_nat_s(s(x), s(y)) → minus_nat_s(x, y)
if(true, x, y) → x
if(false, x, y) → y
mult_nat(s(x), 0) → 0
mult_nat(s(x), s(y)) → plus_nat(mult_nat(x, s(y)), s(y))
mult_nat(0, y) → 0
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))

The set Q consists of the following terms:

plus_nat(0, x0)
plus_nat(s(x0), x1)
mult_nat(0, x0)
mult_nat(s(x0), 0)
mult_nat(s(x0), s(x1))
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
if(true, x0, x1)
if(false, x0, x1)
minus_nat_s(x0, 0)
minus_nat_s(0, s(x0))
minus_nat_s(s(x0), s(x1))
equal_int(pos(0), pos(0))
equal_int(neg(0), pos(0))
equal_int(neg(0), neg(0))
equal_int(pos(0), neg(0))
equal_int(pos(0), pos(s(x0)))
equal_int(neg(0), pos(s(x0)))
equal_int(pos(0), neg(s(x0)))
equal_int(neg(0), neg(s(x0)))
equal_int(pos(s(x0)), pos(0))
equal_int(pos(s(x0)), neg(0))
equal_int(neg(s(x0)), pos(0))
equal_int(neg(s(x0)), neg(0))
equal_int(pos(s(x0)), neg(s(x1)))
equal_int(neg(s(x0)), pos(s(x1)))
equal_int(pos(s(x0)), pos(s(x1)))
equal_int(neg(s(x0)), neg(s(x1)))
mod_nat(0, s(x0))
mod_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
By rewriting [LPAR04] the rule COND1(true, pos(s(s(z0)))) → COND2(equal_int(pos(if(greatereq_int(pos(s(z0)), pos(s(0))), mod_nat(minus_nat_s(s(z0), s(0)), s(s(0))), s(s(z0)))), pos(0)), pos(s(s(z0)))) at position [0,0,0,0] we obtained the following new rules [LPAR04]:

COND1(true, pos(s(s(z0)))) → COND2(equal_int(pos(if(greatereq_int(pos(z0), pos(0)), mod_nat(minus_nat_s(s(z0), s(0)), s(s(0))), s(s(z0)))), pos(0)), pos(s(s(z0))))



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ QDPOrderProof
                          ↳ QDP
                            ↳ UsableRulesProof
                              ↳ QDP
                                ↳ QReductionProof
                                  ↳ QDP
                                    ↳ RemovalProof
                                    ↳ RemovalProof
                                    ↳ Narrowing
                                      ↳ QDP
                                        ↳ DependencyGraphProof
                                          ↳ QDP
                                            ↳ UsableRulesProof
                                              ↳ QDP
                                                ↳ Narrowing
                                                  ↳ QDP
                                                    ↳ UsableRulesProof
                                                      ↳ QDP
                                                        ↳ QReductionProof
                                                          ↳ QDP
                                                            ↳ Rewriting
                                                              ↳ QDP
                                                                ↳ UsableRulesProof
                                                                  ↳ QDP
                                                                    ↳ Rewriting
                                                                      ↳ QDP
                                                                        ↳ UsableRulesProof
                                                                          ↳ QDP
                                                                            ↳ QReductionProof
                                                                              ↳ QDP
                                                                                ↳ Rewriting
                                                                                  ↳ QDP
                                                                                    ↳ Rewriting
                                                                                      ↳ QDP
                                                                                        ↳ Narrowing
                                                                                          ↳ QDP
                                                                                            ↳ DependencyGraphProof
                                                                                              ↳ QDP
                                                                                                ↳ UsableRulesProof
                                                                                                  ↳ QDP
                                                                                                    ↳ QReductionProof
                                                                                                      ↳ QDP
                                                                                                        ↳ Narrowing
                                                                                                          ↳ QDP
                                                                                                            ↳ DependencyGraphProof
                                                                                                              ↳ QDP
                                                                                                                ↳ UsableRulesProof
                                                                                                                  ↳ QDP
                                                                                                                    ↳ QReductionProof
                                                                                                                      ↳ QDP
                                                                                                                        ↳ Instantiation
                                                                                                                          ↳ QDP
                                                                                                                            ↳ Rewriting
                                                                                                                              ↳ QDP
                                                                                                                                ↳ Rewriting
QDP
                                                                                                                                    ↳ Rewriting

Q DP problem:
The TRS P consists of the following rules:

COND2(false, pos(x1)) → F(pos(s(mult_nat(s(s(s(0))), x1))))
F(pos(s(s(x0)))) → COND1(true, pos(s(s(x0))))
COND1(true, pos(s(s(z0)))) → COND2(equal_int(pos(if(greatereq_int(pos(z0), pos(0)), mod_nat(minus_nat_s(s(z0), s(0)), s(s(0))), s(s(z0)))), pos(0)), pos(s(s(z0))))

The TRS R consists of the following rules:

mod_nat(0, s(x)) → 0
mod_nat(s(x), s(y)) → if(greatereq_int(pos(x), pos(y)), mod_nat(minus_nat_s(x, y), s(y)), s(x))
equal_int(pos(0), pos(0)) → true
equal_int(pos(s(x)), pos(0)) → false
greatereq_int(pos(x), pos(0)) → true
greatereq_int(pos(0), pos(s(y))) → false
greatereq_int(pos(s(x)), pos(s(y))) → greatereq_int(pos(x), pos(y))
minus_nat_s(x, 0) → x
minus_nat_s(0, s(y)) → 0
minus_nat_s(s(x), s(y)) → minus_nat_s(x, y)
if(true, x, y) → x
if(false, x, y) → y
mult_nat(s(x), 0) → 0
mult_nat(s(x), s(y)) → plus_nat(mult_nat(x, s(y)), s(y))
mult_nat(0, y) → 0
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))

The set Q consists of the following terms:

plus_nat(0, x0)
plus_nat(s(x0), x1)
mult_nat(0, x0)
mult_nat(s(x0), 0)
mult_nat(s(x0), s(x1))
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
if(true, x0, x1)
if(false, x0, x1)
minus_nat_s(x0, 0)
minus_nat_s(0, s(x0))
minus_nat_s(s(x0), s(x1))
equal_int(pos(0), pos(0))
equal_int(neg(0), pos(0))
equal_int(neg(0), neg(0))
equal_int(pos(0), neg(0))
equal_int(pos(0), pos(s(x0)))
equal_int(neg(0), pos(s(x0)))
equal_int(pos(0), neg(s(x0)))
equal_int(neg(0), neg(s(x0)))
equal_int(pos(s(x0)), pos(0))
equal_int(pos(s(x0)), neg(0))
equal_int(neg(s(x0)), pos(0))
equal_int(neg(s(x0)), neg(0))
equal_int(pos(s(x0)), neg(s(x1)))
equal_int(neg(s(x0)), pos(s(x1)))
equal_int(pos(s(x0)), pos(s(x1)))
equal_int(neg(s(x0)), neg(s(x1)))
mod_nat(0, s(x0))
mod_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
By rewriting [LPAR04] the rule COND1(true, pos(s(s(z0)))) → COND2(equal_int(pos(if(greatereq_int(pos(z0), pos(0)), mod_nat(minus_nat_s(s(z0), s(0)), s(s(0))), s(s(z0)))), pos(0)), pos(s(s(z0)))) at position [0,0,0,0] we obtained the following new rules [LPAR04]:

COND1(true, pos(s(s(z0)))) → COND2(equal_int(pos(if(true, mod_nat(minus_nat_s(s(z0), s(0)), s(s(0))), s(s(z0)))), pos(0)), pos(s(s(z0))))



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ QDPOrderProof
                          ↳ QDP
                            ↳ UsableRulesProof
                              ↳ QDP
                                ↳ QReductionProof
                                  ↳ QDP
                                    ↳ RemovalProof
                                    ↳ RemovalProof
                                    ↳ Narrowing
                                      ↳ QDP
                                        ↳ DependencyGraphProof
                                          ↳ QDP
                                            ↳ UsableRulesProof
                                              ↳ QDP
                                                ↳ Narrowing
                                                  ↳ QDP
                                                    ↳ UsableRulesProof
                                                      ↳ QDP
                                                        ↳ QReductionProof
                                                          ↳ QDP
                                                            ↳ Rewriting
                                                              ↳ QDP
                                                                ↳ UsableRulesProof
                                                                  ↳ QDP
                                                                    ↳ Rewriting
                                                                      ↳ QDP
                                                                        ↳ UsableRulesProof
                                                                          ↳ QDP
                                                                            ↳ QReductionProof
                                                                              ↳ QDP
                                                                                ↳ Rewriting
                                                                                  ↳ QDP
                                                                                    ↳ Rewriting
                                                                                      ↳ QDP
                                                                                        ↳ Narrowing
                                                                                          ↳ QDP
                                                                                            ↳ DependencyGraphProof
                                                                                              ↳ QDP
                                                                                                ↳ UsableRulesProof
                                                                                                  ↳ QDP
                                                                                                    ↳ QReductionProof
                                                                                                      ↳ QDP
                                                                                                        ↳ Narrowing
                                                                                                          ↳ QDP
                                                                                                            ↳ DependencyGraphProof
                                                                                                              ↳ QDP
                                                                                                                ↳ UsableRulesProof
                                                                                                                  ↳ QDP
                                                                                                                    ↳ QReductionProof
                                                                                                                      ↳ QDP
                                                                                                                        ↳ Instantiation
                                                                                                                          ↳ QDP
                                                                                                                            ↳ Rewriting
                                                                                                                              ↳ QDP
                                                                                                                                ↳ Rewriting
                                                                                                                                  ↳ QDP
                                                                                                                                    ↳ Rewriting
QDP
                                                                                                                                        ↳ Rewriting

Q DP problem:
The TRS P consists of the following rules:

COND2(false, pos(x1)) → F(pos(s(mult_nat(s(s(s(0))), x1))))
F(pos(s(s(x0)))) → COND1(true, pos(s(s(x0))))
COND1(true, pos(s(s(z0)))) → COND2(equal_int(pos(if(true, mod_nat(minus_nat_s(s(z0), s(0)), s(s(0))), s(s(z0)))), pos(0)), pos(s(s(z0))))

The TRS R consists of the following rules:

mod_nat(0, s(x)) → 0
mod_nat(s(x), s(y)) → if(greatereq_int(pos(x), pos(y)), mod_nat(minus_nat_s(x, y), s(y)), s(x))
equal_int(pos(0), pos(0)) → true
equal_int(pos(s(x)), pos(0)) → false
greatereq_int(pos(x), pos(0)) → true
greatereq_int(pos(0), pos(s(y))) → false
greatereq_int(pos(s(x)), pos(s(y))) → greatereq_int(pos(x), pos(y))
minus_nat_s(x, 0) → x
minus_nat_s(0, s(y)) → 0
minus_nat_s(s(x), s(y)) → minus_nat_s(x, y)
if(true, x, y) → x
if(false, x, y) → y
mult_nat(s(x), 0) → 0
mult_nat(s(x), s(y)) → plus_nat(mult_nat(x, s(y)), s(y))
mult_nat(0, y) → 0
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))

The set Q consists of the following terms:

plus_nat(0, x0)
plus_nat(s(x0), x1)
mult_nat(0, x0)
mult_nat(s(x0), 0)
mult_nat(s(x0), s(x1))
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
if(true, x0, x1)
if(false, x0, x1)
minus_nat_s(x0, 0)
minus_nat_s(0, s(x0))
minus_nat_s(s(x0), s(x1))
equal_int(pos(0), pos(0))
equal_int(neg(0), pos(0))
equal_int(neg(0), neg(0))
equal_int(pos(0), neg(0))
equal_int(pos(0), pos(s(x0)))
equal_int(neg(0), pos(s(x0)))
equal_int(pos(0), neg(s(x0)))
equal_int(neg(0), neg(s(x0)))
equal_int(pos(s(x0)), pos(0))
equal_int(pos(s(x0)), neg(0))
equal_int(neg(s(x0)), pos(0))
equal_int(neg(s(x0)), neg(0))
equal_int(pos(s(x0)), neg(s(x1)))
equal_int(neg(s(x0)), pos(s(x1)))
equal_int(pos(s(x0)), pos(s(x1)))
equal_int(neg(s(x0)), neg(s(x1)))
mod_nat(0, s(x0))
mod_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
By rewriting [LPAR04] the rule COND1(true, pos(s(s(z0)))) → COND2(equal_int(pos(if(true, mod_nat(minus_nat_s(s(z0), s(0)), s(s(0))), s(s(z0)))), pos(0)), pos(s(s(z0)))) at position [0,0,0] we obtained the following new rules [LPAR04]:

COND1(true, pos(s(s(z0)))) → COND2(equal_int(pos(mod_nat(minus_nat_s(s(z0), s(0)), s(s(0)))), pos(0)), pos(s(s(z0))))



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ QDPOrderProof
                          ↳ QDP
                            ↳ UsableRulesProof
                              ↳ QDP
                                ↳ QReductionProof
                                  ↳ QDP
                                    ↳ RemovalProof
                                    ↳ RemovalProof
                                    ↳ Narrowing
                                      ↳ QDP
                                        ↳ DependencyGraphProof
                                          ↳ QDP
                                            ↳ UsableRulesProof
                                              ↳ QDP
                                                ↳ Narrowing
                                                  ↳ QDP
                                                    ↳ UsableRulesProof
                                                      ↳ QDP
                                                        ↳ QReductionProof
                                                          ↳ QDP
                                                            ↳ Rewriting
                                                              ↳ QDP
                                                                ↳ UsableRulesProof
                                                                  ↳ QDP
                                                                    ↳ Rewriting
                                                                      ↳ QDP
                                                                        ↳ UsableRulesProof
                                                                          ↳ QDP
                                                                            ↳ QReductionProof
                                                                              ↳ QDP
                                                                                ↳ Rewriting
                                                                                  ↳ QDP
                                                                                    ↳ Rewriting
                                                                                      ↳ QDP
                                                                                        ↳ Narrowing
                                                                                          ↳ QDP
                                                                                            ↳ DependencyGraphProof
                                                                                              ↳ QDP
                                                                                                ↳ UsableRulesProof
                                                                                                  ↳ QDP
                                                                                                    ↳ QReductionProof
                                                                                                      ↳ QDP
                                                                                                        ↳ Narrowing
                                                                                                          ↳ QDP
                                                                                                            ↳ DependencyGraphProof
                                                                                                              ↳ QDP
                                                                                                                ↳ UsableRulesProof
                                                                                                                  ↳ QDP
                                                                                                                    ↳ QReductionProof
                                                                                                                      ↳ QDP
                                                                                                                        ↳ Instantiation
                                                                                                                          ↳ QDP
                                                                                                                            ↳ Rewriting
                                                                                                                              ↳ QDP
                                                                                                                                ↳ Rewriting
                                                                                                                                  ↳ QDP
                                                                                                                                    ↳ Rewriting
                                                                                                                                      ↳ QDP
                                                                                                                                        ↳ Rewriting
QDP
                                                                                                                                            ↳ Rewriting

Q DP problem:
The TRS P consists of the following rules:

COND2(false, pos(x1)) → F(pos(s(mult_nat(s(s(s(0))), x1))))
F(pos(s(s(x0)))) → COND1(true, pos(s(s(x0))))
COND1(true, pos(s(s(z0)))) → COND2(equal_int(pos(mod_nat(minus_nat_s(s(z0), s(0)), s(s(0)))), pos(0)), pos(s(s(z0))))

The TRS R consists of the following rules:

mod_nat(0, s(x)) → 0
mod_nat(s(x), s(y)) → if(greatereq_int(pos(x), pos(y)), mod_nat(minus_nat_s(x, y), s(y)), s(x))
equal_int(pos(0), pos(0)) → true
equal_int(pos(s(x)), pos(0)) → false
greatereq_int(pos(x), pos(0)) → true
greatereq_int(pos(0), pos(s(y))) → false
greatereq_int(pos(s(x)), pos(s(y))) → greatereq_int(pos(x), pos(y))
minus_nat_s(x, 0) → x
minus_nat_s(0, s(y)) → 0
minus_nat_s(s(x), s(y)) → minus_nat_s(x, y)
if(true, x, y) → x
if(false, x, y) → y
mult_nat(s(x), 0) → 0
mult_nat(s(x), s(y)) → plus_nat(mult_nat(x, s(y)), s(y))
mult_nat(0, y) → 0
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))

The set Q consists of the following terms:

plus_nat(0, x0)
plus_nat(s(x0), x1)
mult_nat(0, x0)
mult_nat(s(x0), 0)
mult_nat(s(x0), s(x1))
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
if(true, x0, x1)
if(false, x0, x1)
minus_nat_s(x0, 0)
minus_nat_s(0, s(x0))
minus_nat_s(s(x0), s(x1))
equal_int(pos(0), pos(0))
equal_int(neg(0), pos(0))
equal_int(neg(0), neg(0))
equal_int(pos(0), neg(0))
equal_int(pos(0), pos(s(x0)))
equal_int(neg(0), pos(s(x0)))
equal_int(pos(0), neg(s(x0)))
equal_int(neg(0), neg(s(x0)))
equal_int(pos(s(x0)), pos(0))
equal_int(pos(s(x0)), neg(0))
equal_int(neg(s(x0)), pos(0))
equal_int(neg(s(x0)), neg(0))
equal_int(pos(s(x0)), neg(s(x1)))
equal_int(neg(s(x0)), pos(s(x1)))
equal_int(pos(s(x0)), pos(s(x1)))
equal_int(neg(s(x0)), neg(s(x1)))
mod_nat(0, s(x0))
mod_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
By rewriting [LPAR04] the rule COND1(true, pos(s(s(z0)))) → COND2(equal_int(pos(mod_nat(minus_nat_s(s(z0), s(0)), s(s(0)))), pos(0)), pos(s(s(z0)))) at position [0,0,0,0] we obtained the following new rules [LPAR04]:

COND1(true, pos(s(s(z0)))) → COND2(equal_int(pos(mod_nat(minus_nat_s(z0, 0), s(s(0)))), pos(0)), pos(s(s(z0))))



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ QDPOrderProof
                          ↳ QDP
                            ↳ UsableRulesProof
                              ↳ QDP
                                ↳ QReductionProof
                                  ↳ QDP
                                    ↳ RemovalProof
                                    ↳ RemovalProof
                                    ↳ Narrowing
                                      ↳ QDP
                                        ↳ DependencyGraphProof
                                          ↳ QDP
                                            ↳ UsableRulesProof
                                              ↳ QDP
                                                ↳ Narrowing
                                                  ↳ QDP
                                                    ↳ UsableRulesProof
                                                      ↳ QDP
                                                        ↳ QReductionProof
                                                          ↳ QDP
                                                            ↳ Rewriting
                                                              ↳ QDP
                                                                ↳ UsableRulesProof
                                                                  ↳ QDP
                                                                    ↳ Rewriting
                                                                      ↳ QDP
                                                                        ↳ UsableRulesProof
                                                                          ↳ QDP
                                                                            ↳ QReductionProof
                                                                              ↳ QDP
                                                                                ↳ Rewriting
                                                                                  ↳ QDP
                                                                                    ↳ Rewriting
                                                                                      ↳ QDP
                                                                                        ↳ Narrowing
                                                                                          ↳ QDP
                                                                                            ↳ DependencyGraphProof
                                                                                              ↳ QDP
                                                                                                ↳ UsableRulesProof
                                                                                                  ↳ QDP
                                                                                                    ↳ QReductionProof
                                                                                                      ↳ QDP
                                                                                                        ↳ Narrowing
                                                                                                          ↳ QDP
                                                                                                            ↳ DependencyGraphProof
                                                                                                              ↳ QDP
                                                                                                                ↳ UsableRulesProof
                                                                                                                  ↳ QDP
                                                                                                                    ↳ QReductionProof
                                                                                                                      ↳ QDP
                                                                                                                        ↳ Instantiation
                                                                                                                          ↳ QDP
                                                                                                                            ↳ Rewriting
                                                                                                                              ↳ QDP
                                                                                                                                ↳ Rewriting
                                                                                                                                  ↳ QDP
                                                                                                                                    ↳ Rewriting
                                                                                                                                      ↳ QDP
                                                                                                                                        ↳ Rewriting
                                                                                                                                          ↳ QDP
                                                                                                                                            ↳ Rewriting
QDP
                                                                                                                                                ↳ Rewriting

Q DP problem:
The TRS P consists of the following rules:

COND2(false, pos(x1)) → F(pos(s(mult_nat(s(s(s(0))), x1))))
F(pos(s(s(x0)))) → COND1(true, pos(s(s(x0))))
COND1(true, pos(s(s(z0)))) → COND2(equal_int(pos(mod_nat(minus_nat_s(z0, 0), s(s(0)))), pos(0)), pos(s(s(z0))))

The TRS R consists of the following rules:

mod_nat(0, s(x)) → 0
mod_nat(s(x), s(y)) → if(greatereq_int(pos(x), pos(y)), mod_nat(minus_nat_s(x, y), s(y)), s(x))
equal_int(pos(0), pos(0)) → true
equal_int(pos(s(x)), pos(0)) → false
greatereq_int(pos(x), pos(0)) → true
greatereq_int(pos(0), pos(s(y))) → false
greatereq_int(pos(s(x)), pos(s(y))) → greatereq_int(pos(x), pos(y))
minus_nat_s(x, 0) → x
minus_nat_s(0, s(y)) → 0
minus_nat_s(s(x), s(y)) → minus_nat_s(x, y)
if(true, x, y) → x
if(false, x, y) → y
mult_nat(s(x), 0) → 0
mult_nat(s(x), s(y)) → plus_nat(mult_nat(x, s(y)), s(y))
mult_nat(0, y) → 0
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))

The set Q consists of the following terms:

plus_nat(0, x0)
plus_nat(s(x0), x1)
mult_nat(0, x0)
mult_nat(s(x0), 0)
mult_nat(s(x0), s(x1))
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
if(true, x0, x1)
if(false, x0, x1)
minus_nat_s(x0, 0)
minus_nat_s(0, s(x0))
minus_nat_s(s(x0), s(x1))
equal_int(pos(0), pos(0))
equal_int(neg(0), pos(0))
equal_int(neg(0), neg(0))
equal_int(pos(0), neg(0))
equal_int(pos(0), pos(s(x0)))
equal_int(neg(0), pos(s(x0)))
equal_int(pos(0), neg(s(x0)))
equal_int(neg(0), neg(s(x0)))
equal_int(pos(s(x0)), pos(0))
equal_int(pos(s(x0)), neg(0))
equal_int(neg(s(x0)), pos(0))
equal_int(neg(s(x0)), neg(0))
equal_int(pos(s(x0)), neg(s(x1)))
equal_int(neg(s(x0)), pos(s(x1)))
equal_int(pos(s(x0)), pos(s(x1)))
equal_int(neg(s(x0)), neg(s(x1)))
mod_nat(0, s(x0))
mod_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
By rewriting [LPAR04] the rule COND1(true, pos(s(s(z0)))) → COND2(equal_int(pos(mod_nat(minus_nat_s(z0, 0), s(s(0)))), pos(0)), pos(s(s(z0)))) at position [0,0,0,0] we obtained the following new rules [LPAR04]:

COND1(true, pos(s(s(z0)))) → COND2(equal_int(pos(mod_nat(z0, s(s(0)))), pos(0)), pos(s(s(z0))))



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ QDPOrderProof
                          ↳ QDP
                            ↳ UsableRulesProof
                              ↳ QDP
                                ↳ QReductionProof
                                  ↳ QDP
                                    ↳ RemovalProof
                                    ↳ RemovalProof
                                    ↳ Narrowing
                                      ↳ QDP
                                        ↳ DependencyGraphProof
                                          ↳ QDP
                                            ↳ UsableRulesProof
                                              ↳ QDP
                                                ↳ Narrowing
                                                  ↳ QDP
                                                    ↳ UsableRulesProof
                                                      ↳ QDP
                                                        ↳ QReductionProof
                                                          ↳ QDP
                                                            ↳ Rewriting
                                                              ↳ QDP
                                                                ↳ UsableRulesProof
                                                                  ↳ QDP
                                                                    ↳ Rewriting
                                                                      ↳ QDP
                                                                        ↳ UsableRulesProof
                                                                          ↳ QDP
                                                                            ↳ QReductionProof
                                                                              ↳ QDP
                                                                                ↳ Rewriting
                                                                                  ↳ QDP
                                                                                    ↳ Rewriting
                                                                                      ↳ QDP
                                                                                        ↳ Narrowing
                                                                                          ↳ QDP
                                                                                            ↳ DependencyGraphProof
                                                                                              ↳ QDP
                                                                                                ↳ UsableRulesProof
                                                                                                  ↳ QDP
                                                                                                    ↳ QReductionProof
                                                                                                      ↳ QDP
                                                                                                        ↳ Narrowing
                                                                                                          ↳ QDP
                                                                                                            ↳ DependencyGraphProof
                                                                                                              ↳ QDP
                                                                                                                ↳ UsableRulesProof
                                                                                                                  ↳ QDP
                                                                                                                    ↳ QReductionProof
                                                                                                                      ↳ QDP
                                                                                                                        ↳ Instantiation
                                                                                                                          ↳ QDP
                                                                                                                            ↳ Rewriting
                                                                                                                              ↳ QDP
                                                                                                                                ↳ Rewriting
                                                                                                                                  ↳ QDP
                                                                                                                                    ↳ Rewriting
                                                                                                                                      ↳ QDP
                                                                                                                                        ↳ Rewriting
                                                                                                                                          ↳ QDP
                                                                                                                                            ↳ Rewriting
                                                                                                                                              ↳ QDP
                                                                                                                                                ↳ Rewriting
QDP
                                                                                                                                                    ↳ Instantiation

Q DP problem:
The TRS P consists of the following rules:

COND2(false, pos(x1)) → F(pos(s(mult_nat(s(s(s(0))), x1))))
F(pos(s(s(x0)))) → COND1(true, pos(s(s(x0))))
COND1(true, pos(s(s(z0)))) → COND2(equal_int(pos(mod_nat(z0, s(s(0)))), pos(0)), pos(s(s(z0))))

The TRS R consists of the following rules:

mod_nat(0, s(x)) → 0
mod_nat(s(x), s(y)) → if(greatereq_int(pos(x), pos(y)), mod_nat(minus_nat_s(x, y), s(y)), s(x))
equal_int(pos(0), pos(0)) → true
equal_int(pos(s(x)), pos(0)) → false
greatereq_int(pos(x), pos(0)) → true
greatereq_int(pos(0), pos(s(y))) → false
greatereq_int(pos(s(x)), pos(s(y))) → greatereq_int(pos(x), pos(y))
minus_nat_s(x, 0) → x
minus_nat_s(0, s(y)) → 0
minus_nat_s(s(x), s(y)) → minus_nat_s(x, y)
if(true, x, y) → x
if(false, x, y) → y
mult_nat(s(x), 0) → 0
mult_nat(s(x), s(y)) → plus_nat(mult_nat(x, s(y)), s(y))
mult_nat(0, y) → 0
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))

The set Q consists of the following terms:

plus_nat(0, x0)
plus_nat(s(x0), x1)
mult_nat(0, x0)
mult_nat(s(x0), 0)
mult_nat(s(x0), s(x1))
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
if(true, x0, x1)
if(false, x0, x1)
minus_nat_s(x0, 0)
minus_nat_s(0, s(x0))
minus_nat_s(s(x0), s(x1))
equal_int(pos(0), pos(0))
equal_int(neg(0), pos(0))
equal_int(neg(0), neg(0))
equal_int(pos(0), neg(0))
equal_int(pos(0), pos(s(x0)))
equal_int(neg(0), pos(s(x0)))
equal_int(pos(0), neg(s(x0)))
equal_int(neg(0), neg(s(x0)))
equal_int(pos(s(x0)), pos(0))
equal_int(pos(s(x0)), neg(0))
equal_int(neg(s(x0)), pos(0))
equal_int(neg(s(x0)), neg(0))
equal_int(pos(s(x0)), neg(s(x1)))
equal_int(neg(s(x0)), pos(s(x1)))
equal_int(pos(s(x0)), pos(s(x1)))
equal_int(neg(s(x0)), neg(s(x1)))
mod_nat(0, s(x0))
mod_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
By instantiating [LPAR04] the rule COND2(false, pos(x1)) → F(pos(s(mult_nat(s(s(s(0))), x1)))) we obtained the following new rules [LPAR04]:

COND2(false, pos(s(s(z0)))) → F(pos(s(mult_nat(s(s(s(0))), s(s(z0))))))



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ QDPOrderProof
                          ↳ QDP
                            ↳ UsableRulesProof
                              ↳ QDP
                                ↳ QReductionProof
                                  ↳ QDP
                                    ↳ RemovalProof
                                    ↳ RemovalProof
                                    ↳ Narrowing
                                      ↳ QDP
                                        ↳ DependencyGraphProof
                                          ↳ QDP
                                            ↳ UsableRulesProof
                                              ↳ QDP
                                                ↳ Narrowing
                                                  ↳ QDP
                                                    ↳ UsableRulesProof
                                                      ↳ QDP
                                                        ↳ QReductionProof
                                                          ↳ QDP
                                                            ↳ Rewriting
                                                              ↳ QDP
                                                                ↳ UsableRulesProof
                                                                  ↳ QDP
                                                                    ↳ Rewriting
                                                                      ↳ QDP
                                                                        ↳ UsableRulesProof
                                                                          ↳ QDP
                                                                            ↳ QReductionProof
                                                                              ↳ QDP
                                                                                ↳ Rewriting
                                                                                  ↳ QDP
                                                                                    ↳ Rewriting
                                                                                      ↳ QDP
                                                                                        ↳ Narrowing
                                                                                          ↳ QDP
                                                                                            ↳ DependencyGraphProof
                                                                                              ↳ QDP
                                                                                                ↳ UsableRulesProof
                                                                                                  ↳ QDP
                                                                                                    ↳ QReductionProof
                                                                                                      ↳ QDP
                                                                                                        ↳ Narrowing
                                                                                                          ↳ QDP
                                                                                                            ↳ DependencyGraphProof
                                                                                                              ↳ QDP
                                                                                                                ↳ UsableRulesProof
                                                                                                                  ↳ QDP
                                                                                                                    ↳ QReductionProof
                                                                                                                      ↳ QDP
                                                                                                                        ↳ Instantiation
                                                                                                                          ↳ QDP
                                                                                                                            ↳ Rewriting
                                                                                                                              ↳ QDP
                                                                                                                                ↳ Rewriting
                                                                                                                                  ↳ QDP
                                                                                                                                    ↳ Rewriting
                                                                                                                                      ↳ QDP
                                                                                                                                        ↳ Rewriting
                                                                                                                                          ↳ QDP
                                                                                                                                            ↳ Rewriting
                                                                                                                                              ↳ QDP
                                                                                                                                                ↳ Rewriting
                                                                                                                                                  ↳ QDP
                                                                                                                                                    ↳ Instantiation
QDP
                                                                                                                                                        ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

F(pos(s(s(x0)))) → COND1(true, pos(s(s(x0))))
COND1(true, pos(s(s(z0)))) → COND2(equal_int(pos(mod_nat(z0, s(s(0)))), pos(0)), pos(s(s(z0))))
COND2(false, pos(s(s(z0)))) → F(pos(s(mult_nat(s(s(s(0))), s(s(z0))))))

The TRS R consists of the following rules:

mod_nat(0, s(x)) → 0
mod_nat(s(x), s(y)) → if(greatereq_int(pos(x), pos(y)), mod_nat(minus_nat_s(x, y), s(y)), s(x))
equal_int(pos(0), pos(0)) → true
equal_int(pos(s(x)), pos(0)) → false
greatereq_int(pos(x), pos(0)) → true
greatereq_int(pos(0), pos(s(y))) → false
greatereq_int(pos(s(x)), pos(s(y))) → greatereq_int(pos(x), pos(y))
minus_nat_s(x, 0) → x
minus_nat_s(0, s(y)) → 0
minus_nat_s(s(x), s(y)) → minus_nat_s(x, y)
if(true, x, y) → x
if(false, x, y) → y
mult_nat(s(x), 0) → 0
mult_nat(s(x), s(y)) → plus_nat(mult_nat(x, s(y)), s(y))
mult_nat(0, y) → 0
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))

The set Q consists of the following terms:

plus_nat(0, x0)
plus_nat(s(x0), x1)
mult_nat(0, x0)
mult_nat(s(x0), 0)
mult_nat(s(x0), s(x1))
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
if(true, x0, x1)
if(false, x0, x1)
minus_nat_s(x0, 0)
minus_nat_s(0, s(x0))
minus_nat_s(s(x0), s(x1))
equal_int(pos(0), pos(0))
equal_int(neg(0), pos(0))
equal_int(neg(0), neg(0))
equal_int(pos(0), neg(0))
equal_int(pos(0), pos(s(x0)))
equal_int(neg(0), pos(s(x0)))
equal_int(pos(0), neg(s(x0)))
equal_int(neg(0), neg(s(x0)))
equal_int(pos(s(x0)), pos(0))
equal_int(pos(s(x0)), neg(0))
equal_int(neg(s(x0)), pos(0))
equal_int(neg(s(x0)), neg(0))
equal_int(pos(s(x0)), neg(s(x1)))
equal_int(neg(s(x0)), pos(s(x1)))
equal_int(pos(s(x0)), pos(s(x1)))
equal_int(neg(s(x0)), neg(s(x1)))
mod_nat(0, s(x0))
mod_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.

↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ QDPOrderProof
                          ↳ QDP
                            ↳ UsableRulesProof
                              ↳ QDP
                                ↳ QReductionProof
                                  ↳ QDP
                                    ↳ RemovalProof
                                    ↳ RemovalProof
                                    ↳ Narrowing
                                      ↳ QDP
                                        ↳ DependencyGraphProof
                                          ↳ QDP
                                            ↳ UsableRulesProof
                                              ↳ QDP
                                                ↳ Narrowing
                                                  ↳ QDP
                                                    ↳ UsableRulesProof
                                                      ↳ QDP
                                                        ↳ QReductionProof
                                                          ↳ QDP
                                                            ↳ Rewriting
                                                              ↳ QDP
                                                                ↳ UsableRulesProof
                                                                  ↳ QDP
                                                                    ↳ Rewriting
                                                                      ↳ QDP
                                                                        ↳ UsableRulesProof
                                                                          ↳ QDP
                                                                            ↳ QReductionProof
                                                                              ↳ QDP
                                                                                ↳ Rewriting
                                                                                  ↳ QDP
                                                                                    ↳ Rewriting
                                                                                      ↳ QDP
                                                                                        ↳ Narrowing
                                                                                          ↳ QDP
                                                                                            ↳ DependencyGraphProof
                                                                                              ↳ QDP
                                                                                                ↳ UsableRulesProof
                                                                                                  ↳ QDP
                                                                                                    ↳ QReductionProof
                                                                                                      ↳ QDP
                                                                                                        ↳ Narrowing
                                                                                                          ↳ QDP
                                                                                                            ↳ DependencyGraphProof
                                                                                                              ↳ QDP
                                                                                                                ↳ UsableRulesProof
                                                                                                                  ↳ QDP
                                                                                                                    ↳ QReductionProof
                                                                                                                      ↳ QDP
                                                                                                                        ↳ Instantiation
                                                                                                                          ↳ QDP
                                                                                                                            ↳ Rewriting
                                                                                                                              ↳ QDP
                                                                                                                                ↳ Rewriting
                                                                                                                                  ↳ QDP
                                                                                                                                    ↳ Rewriting
                                                                                                                                      ↳ QDP
                                                                                                                                        ↳ Rewriting
                                                                                                                                          ↳ QDP
                                                                                                                                            ↳ Rewriting
                                                                                                                                              ↳ QDP
                                                                                                                                                ↳ Rewriting
                                                                                                                                                  ↳ QDP
                                                                                                                                                    ↳ Instantiation
                                                                                                                                                      ↳ QDP
                                                                                                                                                        ↳ UsableRulesProof
QDP
                                                                                                                                                            ↳ Rewriting

Q DP problem:
The TRS P consists of the following rules:

F(pos(s(s(x0)))) → COND1(true, pos(s(s(x0))))
COND1(true, pos(s(s(z0)))) → COND2(equal_int(pos(mod_nat(z0, s(s(0)))), pos(0)), pos(s(s(z0))))
COND2(false, pos(s(s(z0)))) → F(pos(s(mult_nat(s(s(s(0))), s(s(z0))))))

The TRS R consists of the following rules:

mod_nat(0, s(x)) → 0
mod_nat(s(x), s(y)) → if(greatereq_int(pos(x), pos(y)), mod_nat(minus_nat_s(x, y), s(y)), s(x))
equal_int(pos(0), pos(0)) → true
equal_int(pos(s(x)), pos(0)) → false
greatereq_int(pos(x), pos(0)) → true
greatereq_int(pos(0), pos(s(y))) → false
greatereq_int(pos(s(x)), pos(s(y))) → greatereq_int(pos(x), pos(y))
minus_nat_s(x, 0) → x
minus_nat_s(0, s(y)) → 0
minus_nat_s(s(x), s(y)) → minus_nat_s(x, y)
if(true, x, y) → x
if(false, x, y) → y
mult_nat(s(x), s(y)) → plus_nat(mult_nat(x, s(y)), s(y))
mult_nat(0, y) → 0
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))

The set Q consists of the following terms:

plus_nat(0, x0)
plus_nat(s(x0), x1)
mult_nat(0, x0)
mult_nat(s(x0), 0)
mult_nat(s(x0), s(x1))
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
if(true, x0, x1)
if(false, x0, x1)
minus_nat_s(x0, 0)
minus_nat_s(0, s(x0))
minus_nat_s(s(x0), s(x1))
equal_int(pos(0), pos(0))
equal_int(neg(0), pos(0))
equal_int(neg(0), neg(0))
equal_int(pos(0), neg(0))
equal_int(pos(0), pos(s(x0)))
equal_int(neg(0), pos(s(x0)))
equal_int(pos(0), neg(s(x0)))
equal_int(neg(0), neg(s(x0)))
equal_int(pos(s(x0)), pos(0))
equal_int(pos(s(x0)), neg(0))
equal_int(neg(s(x0)), pos(0))
equal_int(neg(s(x0)), neg(0))
equal_int(pos(s(x0)), neg(s(x1)))
equal_int(neg(s(x0)), pos(s(x1)))
equal_int(pos(s(x0)), pos(s(x1)))
equal_int(neg(s(x0)), neg(s(x1)))
mod_nat(0, s(x0))
mod_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
By rewriting [LPAR04] the rule COND2(false, pos(s(s(z0)))) → F(pos(s(mult_nat(s(s(s(0))), s(s(z0)))))) at position [0,0,0] we obtained the following new rules [LPAR04]:

COND2(false, pos(s(s(z0)))) → F(pos(s(plus_nat(mult_nat(s(s(0)), s(s(z0))), s(s(z0))))))



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ QDPOrderProof
                          ↳ QDP
                            ↳ UsableRulesProof
                              ↳ QDP
                                ↳ QReductionProof
                                  ↳ QDP
                                    ↳ RemovalProof
                                    ↳ RemovalProof
                                    ↳ Narrowing
                                      ↳ QDP
                                        ↳ DependencyGraphProof
                                          ↳ QDP
                                            ↳ UsableRulesProof
                                              ↳ QDP
                                                ↳ Narrowing
                                                  ↳ QDP
                                                    ↳ UsableRulesProof
                                                      ↳ QDP
                                                        ↳ QReductionProof
                                                          ↳ QDP
                                                            ↳ Rewriting
                                                              ↳ QDP
                                                                ↳ UsableRulesProof
                                                                  ↳ QDP
                                                                    ↳ Rewriting
                                                                      ↳ QDP
                                                                        ↳ UsableRulesProof
                                                                          ↳ QDP
                                                                            ↳ QReductionProof
                                                                              ↳ QDP
                                                                                ↳ Rewriting
                                                                                  ↳ QDP
                                                                                    ↳ Rewriting
                                                                                      ↳ QDP
                                                                                        ↳ Narrowing
                                                                                          ↳ QDP
                                                                                            ↳ DependencyGraphProof
                                                                                              ↳ QDP
                                                                                                ↳ UsableRulesProof
                                                                                                  ↳ QDP
                                                                                                    ↳ QReductionProof
                                                                                                      ↳ QDP
                                                                                                        ↳ Narrowing
                                                                                                          ↳ QDP
                                                                                                            ↳ DependencyGraphProof
                                                                                                              ↳ QDP
                                                                                                                ↳ UsableRulesProof
                                                                                                                  ↳ QDP
                                                                                                                    ↳ QReductionProof
                                                                                                                      ↳ QDP
                                                                                                                        ↳ Instantiation
                                                                                                                          ↳ QDP
                                                                                                                            ↳ Rewriting
                                                                                                                              ↳ QDP
                                                                                                                                ↳ Rewriting
                                                                                                                                  ↳ QDP
                                                                                                                                    ↳ Rewriting
                                                                                                                                      ↳ QDP
                                                                                                                                        ↳ Rewriting
                                                                                                                                          ↳ QDP
                                                                                                                                            ↳ Rewriting
                                                                                                                                              ↳ QDP
                                                                                                                                                ↳ Rewriting
                                                                                                                                                  ↳ QDP
                                                                                                                                                    ↳ Instantiation
                                                                                                                                                      ↳ QDP
                                                                                                                                                        ↳ UsableRulesProof
                                                                                                                                                          ↳ QDP
                                                                                                                                                            ↳ Rewriting
QDP
                                                                                                                                                                ↳ Rewriting

Q DP problem:
The TRS P consists of the following rules:

F(pos(s(s(x0)))) → COND1(true, pos(s(s(x0))))
COND1(true, pos(s(s(z0)))) → COND2(equal_int(pos(mod_nat(z0, s(s(0)))), pos(0)), pos(s(s(z0))))
COND2(false, pos(s(s(z0)))) → F(pos(s(plus_nat(mult_nat(s(s(0)), s(s(z0))), s(s(z0))))))

The TRS R consists of the following rules:

mod_nat(0, s(x)) → 0
mod_nat(s(x), s(y)) → if(greatereq_int(pos(x), pos(y)), mod_nat(minus_nat_s(x, y), s(y)), s(x))
equal_int(pos(0), pos(0)) → true
equal_int(pos(s(x)), pos(0)) → false
greatereq_int(pos(x), pos(0)) → true
greatereq_int(pos(0), pos(s(y))) → false
greatereq_int(pos(s(x)), pos(s(y))) → greatereq_int(pos(x), pos(y))
minus_nat_s(x, 0) → x
minus_nat_s(0, s(y)) → 0
minus_nat_s(s(x), s(y)) → minus_nat_s(x, y)
if(true, x, y) → x
if(false, x, y) → y
mult_nat(s(x), s(y)) → plus_nat(mult_nat(x, s(y)), s(y))
mult_nat(0, y) → 0
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))

The set Q consists of the following terms:

plus_nat(0, x0)
plus_nat(s(x0), x1)
mult_nat(0, x0)
mult_nat(s(x0), 0)
mult_nat(s(x0), s(x1))
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
if(true, x0, x1)
if(false, x0, x1)
minus_nat_s(x0, 0)
minus_nat_s(0, s(x0))
minus_nat_s(s(x0), s(x1))
equal_int(pos(0), pos(0))
equal_int(neg(0), pos(0))
equal_int(neg(0), neg(0))
equal_int(pos(0), neg(0))
equal_int(pos(0), pos(s(x0)))
equal_int(neg(0), pos(s(x0)))
equal_int(pos(0), neg(s(x0)))
equal_int(neg(0), neg(s(x0)))
equal_int(pos(s(x0)), pos(0))
equal_int(pos(s(x0)), neg(0))
equal_int(neg(s(x0)), pos(0))
equal_int(neg(s(x0)), neg(0))
equal_int(pos(s(x0)), neg(s(x1)))
equal_int(neg(s(x0)), pos(s(x1)))
equal_int(pos(s(x0)), pos(s(x1)))
equal_int(neg(s(x0)), neg(s(x1)))
mod_nat(0, s(x0))
mod_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
By rewriting [LPAR04] the rule COND2(false, pos(s(s(z0)))) → F(pos(s(plus_nat(mult_nat(s(s(0)), s(s(z0))), s(s(z0)))))) at position [0,0,0,0] we obtained the following new rules [LPAR04]:

COND2(false, pos(s(s(z0)))) → F(pos(s(plus_nat(plus_nat(mult_nat(s(0), s(s(z0))), s(s(z0))), s(s(z0))))))



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ QDPOrderProof
                          ↳ QDP
                            ↳ UsableRulesProof
                              ↳ QDP
                                ↳ QReductionProof
                                  ↳ QDP
                                    ↳ RemovalProof
                                    ↳ RemovalProof
                                    ↳ Narrowing
                                      ↳ QDP
                                        ↳ DependencyGraphProof
                                          ↳ QDP
                                            ↳ UsableRulesProof
                                              ↳ QDP
                                                ↳ Narrowing
                                                  ↳ QDP
                                                    ↳ UsableRulesProof
                                                      ↳ QDP
                                                        ↳ QReductionProof
                                                          ↳ QDP
                                                            ↳ Rewriting
                                                              ↳ QDP
                                                                ↳ UsableRulesProof
                                                                  ↳ QDP
                                                                    ↳ Rewriting
                                                                      ↳ QDP
                                                                        ↳ UsableRulesProof
                                                                          ↳ QDP
                                                                            ↳ QReductionProof
                                                                              ↳ QDP
                                                                                ↳ Rewriting
                                                                                  ↳ QDP
                                                                                    ↳ Rewriting
                                                                                      ↳ QDP
                                                                                        ↳ Narrowing
                                                                                          ↳ QDP
                                                                                            ↳ DependencyGraphProof
                                                                                              ↳ QDP
                                                                                                ↳ UsableRulesProof
                                                                                                  ↳ QDP
                                                                                                    ↳ QReductionProof
                                                                                                      ↳ QDP
                                                                                                        ↳ Narrowing
                                                                                                          ↳ QDP
                                                                                                            ↳ DependencyGraphProof
                                                                                                              ↳ QDP
                                                                                                                ↳ UsableRulesProof
                                                                                                                  ↳ QDP
                                                                                                                    ↳ QReductionProof
                                                                                                                      ↳ QDP
                                                                                                                        ↳ Instantiation
                                                                                                                          ↳ QDP
                                                                                                                            ↳ Rewriting
                                                                                                                              ↳ QDP
                                                                                                                                ↳ Rewriting
                                                                                                                                  ↳ QDP
                                                                                                                                    ↳ Rewriting
                                                                                                                                      ↳ QDP
                                                                                                                                        ↳ Rewriting
                                                                                                                                          ↳ QDP
                                                                                                                                            ↳ Rewriting
                                                                                                                                              ↳ QDP
                                                                                                                                                ↳ Rewriting
                                                                                                                                                  ↳ QDP
                                                                                                                                                    ↳ Instantiation
                                                                                                                                                      ↳ QDP
                                                                                                                                                        ↳ UsableRulesProof
                                                                                                                                                          ↳ QDP
                                                                                                                                                            ↳ Rewriting
                                                                                                                                                              ↳ QDP
                                                                                                                                                                ↳ Rewriting
QDP
                                                                                                                                                                    ↳ Rewriting

Q DP problem:
The TRS P consists of the following rules:

F(pos(s(s(x0)))) → COND1(true, pos(s(s(x0))))
COND1(true, pos(s(s(z0)))) → COND2(equal_int(pos(mod_nat(z0, s(s(0)))), pos(0)), pos(s(s(z0))))
COND2(false, pos(s(s(z0)))) → F(pos(s(plus_nat(plus_nat(mult_nat(s(0), s(s(z0))), s(s(z0))), s(s(z0))))))

The TRS R consists of the following rules:

mod_nat(0, s(x)) → 0
mod_nat(s(x), s(y)) → if(greatereq_int(pos(x), pos(y)), mod_nat(minus_nat_s(x, y), s(y)), s(x))
equal_int(pos(0), pos(0)) → true
equal_int(pos(s(x)), pos(0)) → false
greatereq_int(pos(x), pos(0)) → true
greatereq_int(pos(0), pos(s(y))) → false
greatereq_int(pos(s(x)), pos(s(y))) → greatereq_int(pos(x), pos(y))
minus_nat_s(x, 0) → x
minus_nat_s(0, s(y)) → 0
minus_nat_s(s(x), s(y)) → minus_nat_s(x, y)
if(true, x, y) → x
if(false, x, y) → y
mult_nat(s(x), s(y)) → plus_nat(mult_nat(x, s(y)), s(y))
mult_nat(0, y) → 0
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))

The set Q consists of the following terms:

plus_nat(0, x0)
plus_nat(s(x0), x1)
mult_nat(0, x0)
mult_nat(s(x0), 0)
mult_nat(s(x0), s(x1))
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
if(true, x0, x1)
if(false, x0, x1)
minus_nat_s(x0, 0)
minus_nat_s(0, s(x0))
minus_nat_s(s(x0), s(x1))
equal_int(pos(0), pos(0))
equal_int(neg(0), pos(0))
equal_int(neg(0), neg(0))
equal_int(pos(0), neg(0))
equal_int(pos(0), pos(s(x0)))
equal_int(neg(0), pos(s(x0)))
equal_int(pos(0), neg(s(x0)))
equal_int(neg(0), neg(s(x0)))
equal_int(pos(s(x0)), pos(0))
equal_int(pos(s(x0)), neg(0))
equal_int(neg(s(x0)), pos(0))
equal_int(neg(s(x0)), neg(0))
equal_int(pos(s(x0)), neg(s(x1)))
equal_int(neg(s(x0)), pos(s(x1)))
equal_int(pos(s(x0)), pos(s(x1)))
equal_int(neg(s(x0)), neg(s(x1)))
mod_nat(0, s(x0))
mod_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
By rewriting [LPAR04] the rule COND2(false, pos(s(s(z0)))) → F(pos(s(plus_nat(plus_nat(mult_nat(s(0), s(s(z0))), s(s(z0))), s(s(z0)))))) at position [0,0,0,0,0] we obtained the following new rules [LPAR04]:

COND2(false, pos(s(s(z0)))) → F(pos(s(plus_nat(plus_nat(plus_nat(mult_nat(0, s(s(z0))), s(s(z0))), s(s(z0))), s(s(z0))))))



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ QDPOrderProof
                          ↳ QDP
                            ↳ UsableRulesProof
                              ↳ QDP
                                ↳ QReductionProof
                                  ↳ QDP
                                    ↳ RemovalProof
                                    ↳ RemovalProof
                                    ↳ Narrowing
                                      ↳ QDP
                                        ↳ DependencyGraphProof
                                          ↳ QDP
                                            ↳ UsableRulesProof
                                              ↳ QDP
                                                ↳ Narrowing
                                                  ↳ QDP
                                                    ↳ UsableRulesProof
                                                      ↳ QDP
                                                        ↳ QReductionProof
                                                          ↳ QDP
                                                            ↳ Rewriting
                                                              ↳ QDP
                                                                ↳ UsableRulesProof
                                                                  ↳ QDP
                                                                    ↳ Rewriting
                                                                      ↳ QDP
                                                                        ↳ UsableRulesProof
                                                                          ↳ QDP
                                                                            ↳ QReductionProof
                                                                              ↳ QDP
                                                                                ↳ Rewriting
                                                                                  ↳ QDP
                                                                                    ↳ Rewriting
                                                                                      ↳ QDP
                                                                                        ↳ Narrowing
                                                                                          ↳ QDP
                                                                                            ↳ DependencyGraphProof
                                                                                              ↳ QDP
                                                                                                ↳ UsableRulesProof
                                                                                                  ↳ QDP
                                                                                                    ↳ QReductionProof
                                                                                                      ↳ QDP
                                                                                                        ↳ Narrowing
                                                                                                          ↳ QDP
                                                                                                            ↳ DependencyGraphProof
                                                                                                              ↳ QDP
                                                                                                                ↳ UsableRulesProof
                                                                                                                  ↳ QDP
                                                                                                                    ↳ QReductionProof
                                                                                                                      ↳ QDP
                                                                                                                        ↳ Instantiation
                                                                                                                          ↳ QDP
                                                                                                                            ↳ Rewriting
                                                                                                                              ↳ QDP
                                                                                                                                ↳ Rewriting
                                                                                                                                  ↳ QDP
                                                                                                                                    ↳ Rewriting
                                                                                                                                      ↳ QDP
                                                                                                                                        ↳ Rewriting
                                                                                                                                          ↳ QDP
                                                                                                                                            ↳ Rewriting
                                                                                                                                              ↳ QDP
                                                                                                                                                ↳ Rewriting
                                                                                                                                                  ↳ QDP
                                                                                                                                                    ↳ Instantiation
                                                                                                                                                      ↳ QDP
                                                                                                                                                        ↳ UsableRulesProof
                                                                                                                                                          ↳ QDP
                                                                                                                                                            ↳ Rewriting
                                                                                                                                                              ↳ QDP
                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                  ↳ QDP
                                                                                                                                                                    ↳ Rewriting
QDP
                                                                                                                                                                        ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

F(pos(s(s(x0)))) → COND1(true, pos(s(s(x0))))
COND1(true, pos(s(s(z0)))) → COND2(equal_int(pos(mod_nat(z0, s(s(0)))), pos(0)), pos(s(s(z0))))
COND2(false, pos(s(s(z0)))) → F(pos(s(plus_nat(plus_nat(plus_nat(mult_nat(0, s(s(z0))), s(s(z0))), s(s(z0))), s(s(z0))))))

The TRS R consists of the following rules:

mod_nat(0, s(x)) → 0
mod_nat(s(x), s(y)) → if(greatereq_int(pos(x), pos(y)), mod_nat(minus_nat_s(x, y), s(y)), s(x))
equal_int(pos(0), pos(0)) → true
equal_int(pos(s(x)), pos(0)) → false
greatereq_int(pos(x), pos(0)) → true
greatereq_int(pos(0), pos(s(y))) → false
greatereq_int(pos(s(x)), pos(s(y))) → greatereq_int(pos(x), pos(y))
minus_nat_s(x, 0) → x
minus_nat_s(0, s(y)) → 0
minus_nat_s(s(x), s(y)) → minus_nat_s(x, y)
if(true, x, y) → x
if(false, x, y) → y
mult_nat(s(x), s(y)) → plus_nat(mult_nat(x, s(y)), s(y))
mult_nat(0, y) → 0
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))

The set Q consists of the following terms:

plus_nat(0, x0)
plus_nat(s(x0), x1)
mult_nat(0, x0)
mult_nat(s(x0), 0)
mult_nat(s(x0), s(x1))
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
if(true, x0, x1)
if(false, x0, x1)
minus_nat_s(x0, 0)
minus_nat_s(0, s(x0))
minus_nat_s(s(x0), s(x1))
equal_int(pos(0), pos(0))
equal_int(neg(0), pos(0))
equal_int(neg(0), neg(0))
equal_int(pos(0), neg(0))
equal_int(pos(0), pos(s(x0)))
equal_int(neg(0), pos(s(x0)))
equal_int(pos(0), neg(s(x0)))
equal_int(neg(0), neg(s(x0)))
equal_int(pos(s(x0)), pos(0))
equal_int(pos(s(x0)), neg(0))
equal_int(neg(s(x0)), pos(0))
equal_int(neg(s(x0)), neg(0))
equal_int(pos(s(x0)), neg(s(x1)))
equal_int(neg(s(x0)), pos(s(x1)))
equal_int(pos(s(x0)), pos(s(x1)))
equal_int(neg(s(x0)), neg(s(x1)))
mod_nat(0, s(x0))
mod_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.

↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ QDPOrderProof
                          ↳ QDP
                            ↳ UsableRulesProof
                              ↳ QDP
                                ↳ QReductionProof
                                  ↳ QDP
                                    ↳ RemovalProof
                                    ↳ RemovalProof
                                    ↳ Narrowing
                                      ↳ QDP
                                        ↳ DependencyGraphProof
                                          ↳ QDP
                                            ↳ UsableRulesProof
                                              ↳ QDP
                                                ↳ Narrowing
                                                  ↳ QDP
                                                    ↳ UsableRulesProof
                                                      ↳ QDP
                                                        ↳ QReductionProof
                                                          ↳ QDP
                                                            ↳ Rewriting
                                                              ↳ QDP
                                                                ↳ UsableRulesProof
                                                                  ↳ QDP
                                                                    ↳ Rewriting
                                                                      ↳ QDP
                                                                        ↳ UsableRulesProof
                                                                          ↳ QDP
                                                                            ↳ QReductionProof
                                                                              ↳ QDP
                                                                                ↳ Rewriting
                                                                                  ↳ QDP
                                                                                    ↳ Rewriting
                                                                                      ↳ QDP
                                                                                        ↳ Narrowing
                                                                                          ↳ QDP
                                                                                            ↳ DependencyGraphProof
                                                                                              ↳ QDP
                                                                                                ↳ UsableRulesProof
                                                                                                  ↳ QDP
                                                                                                    ↳ QReductionProof
                                                                                                      ↳ QDP
                                                                                                        ↳ Narrowing
                                                                                                          ↳ QDP
                                                                                                            ↳ DependencyGraphProof
                                                                                                              ↳ QDP
                                                                                                                ↳ UsableRulesProof
                                                                                                                  ↳ QDP
                                                                                                                    ↳ QReductionProof
                                                                                                                      ↳ QDP
                                                                                                                        ↳ Instantiation
                                                                                                                          ↳ QDP
                                                                                                                            ↳ Rewriting
                                                                                                                              ↳ QDP
                                                                                                                                ↳ Rewriting
                                                                                                                                  ↳ QDP
                                                                                                                                    ↳ Rewriting
                                                                                                                                      ↳ QDP
                                                                                                                                        ↳ Rewriting
                                                                                                                                          ↳ QDP
                                                                                                                                            ↳ Rewriting
                                                                                                                                              ↳ QDP
                                                                                                                                                ↳ Rewriting
                                                                                                                                                  ↳ QDP
                                                                                                                                                    ↳ Instantiation
                                                                                                                                                      ↳ QDP
                                                                                                                                                        ↳ UsableRulesProof
                                                                                                                                                          ↳ QDP
                                                                                                                                                            ↳ Rewriting
                                                                                                                                                              ↳ QDP
                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                  ↳ QDP
                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                      ↳ QDP
                                                                                                                                                                        ↳ UsableRulesProof
QDP
                                                                                                                                                                            ↳ Rewriting

Q DP problem:
The TRS P consists of the following rules:

F(pos(s(s(x0)))) → COND1(true, pos(s(s(x0))))
COND1(true, pos(s(s(z0)))) → COND2(equal_int(pos(mod_nat(z0, s(s(0)))), pos(0)), pos(s(s(z0))))
COND2(false, pos(s(s(z0)))) → F(pos(s(plus_nat(plus_nat(plus_nat(mult_nat(0, s(s(z0))), s(s(z0))), s(s(z0))), s(s(z0))))))

The TRS R consists of the following rules:

mult_nat(0, y) → 0
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
mod_nat(0, s(x)) → 0
mod_nat(s(x), s(y)) → if(greatereq_int(pos(x), pos(y)), mod_nat(minus_nat_s(x, y), s(y)), s(x))
equal_int(pos(0), pos(0)) → true
equal_int(pos(s(x)), pos(0)) → false
greatereq_int(pos(x), pos(0)) → true
greatereq_int(pos(0), pos(s(y))) → false
greatereq_int(pos(s(x)), pos(s(y))) → greatereq_int(pos(x), pos(y))
minus_nat_s(x, 0) → x
minus_nat_s(0, s(y)) → 0
minus_nat_s(s(x), s(y)) → minus_nat_s(x, y)
if(true, x, y) → x
if(false, x, y) → y

The set Q consists of the following terms:

plus_nat(0, x0)
plus_nat(s(x0), x1)
mult_nat(0, x0)
mult_nat(s(x0), 0)
mult_nat(s(x0), s(x1))
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
if(true, x0, x1)
if(false, x0, x1)
minus_nat_s(x0, 0)
minus_nat_s(0, s(x0))
minus_nat_s(s(x0), s(x1))
equal_int(pos(0), pos(0))
equal_int(neg(0), pos(0))
equal_int(neg(0), neg(0))
equal_int(pos(0), neg(0))
equal_int(pos(0), pos(s(x0)))
equal_int(neg(0), pos(s(x0)))
equal_int(pos(0), neg(s(x0)))
equal_int(neg(0), neg(s(x0)))
equal_int(pos(s(x0)), pos(0))
equal_int(pos(s(x0)), neg(0))
equal_int(neg(s(x0)), pos(0))
equal_int(neg(s(x0)), neg(0))
equal_int(pos(s(x0)), neg(s(x1)))
equal_int(neg(s(x0)), pos(s(x1)))
equal_int(pos(s(x0)), pos(s(x1)))
equal_int(neg(s(x0)), neg(s(x1)))
mod_nat(0, s(x0))
mod_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
By rewriting [LPAR04] the rule COND2(false, pos(s(s(z0)))) → F(pos(s(plus_nat(plus_nat(plus_nat(mult_nat(0, s(s(z0))), s(s(z0))), s(s(z0))), s(s(z0)))))) at position [0,0,0,0,0,0] we obtained the following new rules [LPAR04]:

COND2(false, pos(s(s(z0)))) → F(pos(s(plus_nat(plus_nat(plus_nat(0, s(s(z0))), s(s(z0))), s(s(z0))))))



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ QDPOrderProof
                          ↳ QDP
                            ↳ UsableRulesProof
                              ↳ QDP
                                ↳ QReductionProof
                                  ↳ QDP
                                    ↳ RemovalProof
                                    ↳ RemovalProof
                                    ↳ Narrowing
                                      ↳ QDP
                                        ↳ DependencyGraphProof
                                          ↳ QDP
                                            ↳ UsableRulesProof
                                              ↳ QDP
                                                ↳ Narrowing
                                                  ↳ QDP
                                                    ↳ UsableRulesProof
                                                      ↳ QDP
                                                        ↳ QReductionProof
                                                          ↳ QDP
                                                            ↳ Rewriting
                                                              ↳ QDP
                                                                ↳ UsableRulesProof
                                                                  ↳ QDP
                                                                    ↳ Rewriting
                                                                      ↳ QDP
                                                                        ↳ UsableRulesProof
                                                                          ↳ QDP
                                                                            ↳ QReductionProof
                                                                              ↳ QDP
                                                                                ↳ Rewriting
                                                                                  ↳ QDP
                                                                                    ↳ Rewriting
                                                                                      ↳ QDP
                                                                                        ↳ Narrowing
                                                                                          ↳ QDP
                                                                                            ↳ DependencyGraphProof
                                                                                              ↳ QDP
                                                                                                ↳ UsableRulesProof
                                                                                                  ↳ QDP
                                                                                                    ↳ QReductionProof
                                                                                                      ↳ QDP
                                                                                                        ↳ Narrowing
                                                                                                          ↳ QDP
                                                                                                            ↳ DependencyGraphProof
                                                                                                              ↳ QDP
                                                                                                                ↳ UsableRulesProof
                                                                                                                  ↳ QDP
                                                                                                                    ↳ QReductionProof
                                                                                                                      ↳ QDP
                                                                                                                        ↳ Instantiation
                                                                                                                          ↳ QDP
                                                                                                                            ↳ Rewriting
                                                                                                                              ↳ QDP
                                                                                                                                ↳ Rewriting
                                                                                                                                  ↳ QDP
                                                                                                                                    ↳ Rewriting
                                                                                                                                      ↳ QDP
                                                                                                                                        ↳ Rewriting
                                                                                                                                          ↳ QDP
                                                                                                                                            ↳ Rewriting
                                                                                                                                              ↳ QDP
                                                                                                                                                ↳ Rewriting
                                                                                                                                                  ↳ QDP
                                                                                                                                                    ↳ Instantiation
                                                                                                                                                      ↳ QDP
                                                                                                                                                        ↳ UsableRulesProof
                                                                                                                                                          ↳ QDP
                                                                                                                                                            ↳ Rewriting
                                                                                                                                                              ↳ QDP
                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                  ↳ QDP
                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                      ↳ QDP
                                                                                                                                                                        ↳ UsableRulesProof
                                                                                                                                                                          ↳ QDP
                                                                                                                                                                            ↳ Rewriting
QDP
                                                                                                                                                                                ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

F(pos(s(s(x0)))) → COND1(true, pos(s(s(x0))))
COND1(true, pos(s(s(z0)))) → COND2(equal_int(pos(mod_nat(z0, s(s(0)))), pos(0)), pos(s(s(z0))))
COND2(false, pos(s(s(z0)))) → F(pos(s(plus_nat(plus_nat(plus_nat(0, s(s(z0))), s(s(z0))), s(s(z0))))))

The TRS R consists of the following rules:

mult_nat(0, y) → 0
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
mod_nat(0, s(x)) → 0
mod_nat(s(x), s(y)) → if(greatereq_int(pos(x), pos(y)), mod_nat(minus_nat_s(x, y), s(y)), s(x))
equal_int(pos(0), pos(0)) → true
equal_int(pos(s(x)), pos(0)) → false
greatereq_int(pos(x), pos(0)) → true
greatereq_int(pos(0), pos(s(y))) → false
greatereq_int(pos(s(x)), pos(s(y))) → greatereq_int(pos(x), pos(y))
minus_nat_s(x, 0) → x
minus_nat_s(0, s(y)) → 0
minus_nat_s(s(x), s(y)) → minus_nat_s(x, y)
if(true, x, y) → x
if(false, x, y) → y

The set Q consists of the following terms:

plus_nat(0, x0)
plus_nat(s(x0), x1)
mult_nat(0, x0)
mult_nat(s(x0), 0)
mult_nat(s(x0), s(x1))
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
if(true, x0, x1)
if(false, x0, x1)
minus_nat_s(x0, 0)
minus_nat_s(0, s(x0))
minus_nat_s(s(x0), s(x1))
equal_int(pos(0), pos(0))
equal_int(neg(0), pos(0))
equal_int(neg(0), neg(0))
equal_int(pos(0), neg(0))
equal_int(pos(0), pos(s(x0)))
equal_int(neg(0), pos(s(x0)))
equal_int(pos(0), neg(s(x0)))
equal_int(neg(0), neg(s(x0)))
equal_int(pos(s(x0)), pos(0))
equal_int(pos(s(x0)), neg(0))
equal_int(neg(s(x0)), pos(0))
equal_int(neg(s(x0)), neg(0))
equal_int(pos(s(x0)), neg(s(x1)))
equal_int(neg(s(x0)), pos(s(x1)))
equal_int(pos(s(x0)), pos(s(x1)))
equal_int(neg(s(x0)), neg(s(x1)))
mod_nat(0, s(x0))
mod_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.

↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ QDPOrderProof
                          ↳ QDP
                            ↳ UsableRulesProof
                              ↳ QDP
                                ↳ QReductionProof
                                  ↳ QDP
                                    ↳ RemovalProof
                                    ↳ RemovalProof
                                    ↳ Narrowing
                                      ↳ QDP
                                        ↳ DependencyGraphProof
                                          ↳ QDP
                                            ↳ UsableRulesProof
                                              ↳ QDP
                                                ↳ Narrowing
                                                  ↳ QDP
                                                    ↳ UsableRulesProof
                                                      ↳ QDP
                                                        ↳ QReductionProof
                                                          ↳ QDP
                                                            ↳ Rewriting
                                                              ↳ QDP
                                                                ↳ UsableRulesProof
                                                                  ↳ QDP
                                                                    ↳ Rewriting
                                                                      ↳ QDP
                                                                        ↳ UsableRulesProof
                                                                          ↳ QDP
                                                                            ↳ QReductionProof
                                                                              ↳ QDP
                                                                                ↳ Rewriting
                                                                                  ↳ QDP
                                                                                    ↳ Rewriting
                                                                                      ↳ QDP
                                                                                        ↳ Narrowing
                                                                                          ↳ QDP
                                                                                            ↳ DependencyGraphProof
                                                                                              ↳ QDP
                                                                                                ↳ UsableRulesProof
                                                                                                  ↳ QDP
                                                                                                    ↳ QReductionProof
                                                                                                      ↳ QDP
                                                                                                        ↳ Narrowing
                                                                                                          ↳ QDP
                                                                                                            ↳ DependencyGraphProof
                                                                                                              ↳ QDP
                                                                                                                ↳ UsableRulesProof
                                                                                                                  ↳ QDP
                                                                                                                    ↳ QReductionProof
                                                                                                                      ↳ QDP
                                                                                                                        ↳ Instantiation
                                                                                                                          ↳ QDP
                                                                                                                            ↳ Rewriting
                                                                                                                              ↳ QDP
                                                                                                                                ↳ Rewriting
                                                                                                                                  ↳ QDP
                                                                                                                                    ↳ Rewriting
                                                                                                                                      ↳ QDP
                                                                                                                                        ↳ Rewriting
                                                                                                                                          ↳ QDP
                                                                                                                                            ↳ Rewriting
                                                                                                                                              ↳ QDP
                                                                                                                                                ↳ Rewriting
                                                                                                                                                  ↳ QDP
                                                                                                                                                    ↳ Instantiation
                                                                                                                                                      ↳ QDP
                                                                                                                                                        ↳ UsableRulesProof
                                                                                                                                                          ↳ QDP
                                                                                                                                                            ↳ Rewriting
                                                                                                                                                              ↳ QDP
                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                  ↳ QDP
                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                      ↳ QDP
                                                                                                                                                                        ↳ UsableRulesProof
                                                                                                                                                                          ↳ QDP
                                                                                                                                                                            ↳ Rewriting
                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                ↳ UsableRulesProof
QDP
                                                                                                                                                                                    ↳ QReductionProof

Q DP problem:
The TRS P consists of the following rules:

F(pos(s(s(x0)))) → COND1(true, pos(s(s(x0))))
COND1(true, pos(s(s(z0)))) → COND2(equal_int(pos(mod_nat(z0, s(s(0)))), pos(0)), pos(s(s(z0))))
COND2(false, pos(s(s(z0)))) → F(pos(s(plus_nat(plus_nat(plus_nat(0, s(s(z0))), s(s(z0))), s(s(z0))))))

The TRS R consists of the following rules:

mod_nat(0, s(x)) → 0
mod_nat(s(x), s(y)) → if(greatereq_int(pos(x), pos(y)), mod_nat(minus_nat_s(x, y), s(y)), s(x))
equal_int(pos(0), pos(0)) → true
equal_int(pos(s(x)), pos(0)) → false
greatereq_int(pos(x), pos(0)) → true
greatereq_int(pos(0), pos(s(y))) → false
greatereq_int(pos(s(x)), pos(s(y))) → greatereq_int(pos(x), pos(y))
minus_nat_s(x, 0) → x
minus_nat_s(0, s(y)) → 0
minus_nat_s(s(x), s(y)) → minus_nat_s(x, y)
if(true, x, y) → x
if(false, x, y) → y
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))

The set Q consists of the following terms:

plus_nat(0, x0)
plus_nat(s(x0), x1)
mult_nat(0, x0)
mult_nat(s(x0), 0)
mult_nat(s(x0), s(x1))
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
if(true, x0, x1)
if(false, x0, x1)
minus_nat_s(x0, 0)
minus_nat_s(0, s(x0))
minus_nat_s(s(x0), s(x1))
equal_int(pos(0), pos(0))
equal_int(neg(0), pos(0))
equal_int(neg(0), neg(0))
equal_int(pos(0), neg(0))
equal_int(pos(0), pos(s(x0)))
equal_int(neg(0), pos(s(x0)))
equal_int(pos(0), neg(s(x0)))
equal_int(neg(0), neg(s(x0)))
equal_int(pos(s(x0)), pos(0))
equal_int(pos(s(x0)), neg(0))
equal_int(neg(s(x0)), pos(0))
equal_int(neg(s(x0)), neg(0))
equal_int(pos(s(x0)), neg(s(x1)))
equal_int(neg(s(x0)), pos(s(x1)))
equal_int(pos(s(x0)), pos(s(x1)))
equal_int(neg(s(x0)), neg(s(x1)))
mod_nat(0, s(x0))
mod_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].

mult_nat(0, x0)
mult_nat(s(x0), 0)
mult_nat(s(x0), s(x1))



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ QDPOrderProof
                          ↳ QDP
                            ↳ UsableRulesProof
                              ↳ QDP
                                ↳ QReductionProof
                                  ↳ QDP
                                    ↳ RemovalProof
                                    ↳ RemovalProof
                                    ↳ Narrowing
                                      ↳ QDP
                                        ↳ DependencyGraphProof
                                          ↳ QDP
                                            ↳ UsableRulesProof
                                              ↳ QDP
                                                ↳ Narrowing
                                                  ↳ QDP
                                                    ↳ UsableRulesProof
                                                      ↳ QDP
                                                        ↳ QReductionProof
                                                          ↳ QDP
                                                            ↳ Rewriting
                                                              ↳ QDP
                                                                ↳ UsableRulesProof
                                                                  ↳ QDP
                                                                    ↳ Rewriting
                                                                      ↳ QDP
                                                                        ↳ UsableRulesProof
                                                                          ↳ QDP
                                                                            ↳ QReductionProof
                                                                              ↳ QDP
                                                                                ↳ Rewriting
                                                                                  ↳ QDP
                                                                                    ↳ Rewriting
                                                                                      ↳ QDP
                                                                                        ↳ Narrowing
                                                                                          ↳ QDP
                                                                                            ↳ DependencyGraphProof
                                                                                              ↳ QDP
                                                                                                ↳ UsableRulesProof
                                                                                                  ↳ QDP
                                                                                                    ↳ QReductionProof
                                                                                                      ↳ QDP
                                                                                                        ↳ Narrowing
                                                                                                          ↳ QDP
                                                                                                            ↳ DependencyGraphProof
                                                                                                              ↳ QDP
                                                                                                                ↳ UsableRulesProof
                                                                                                                  ↳ QDP
                                                                                                                    ↳ QReductionProof
                                                                                                                      ↳ QDP
                                                                                                                        ↳ Instantiation
                                                                                                                          ↳ QDP
                                                                                                                            ↳ Rewriting
                                                                                                                              ↳ QDP
                                                                                                                                ↳ Rewriting
                                                                                                                                  ↳ QDP
                                                                                                                                    ↳ Rewriting
                                                                                                                                      ↳ QDP
                                                                                                                                        ↳ Rewriting
                                                                                                                                          ↳ QDP
                                                                                                                                            ↳ Rewriting
                                                                                                                                              ↳ QDP
                                                                                                                                                ↳ Rewriting
                                                                                                                                                  ↳ QDP
                                                                                                                                                    ↳ Instantiation
                                                                                                                                                      ↳ QDP
                                                                                                                                                        ↳ UsableRulesProof
                                                                                                                                                          ↳ QDP
                                                                                                                                                            ↳ Rewriting
                                                                                                                                                              ↳ QDP
                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                  ↳ QDP
                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                      ↳ QDP
                                                                                                                                                                        ↳ UsableRulesProof
                                                                                                                                                                          ↳ QDP
                                                                                                                                                                            ↳ Rewriting
                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                ↳ UsableRulesProof
                                                                                                                                                                                  ↳ QDP
                                                                                                                                                                                    ↳ QReductionProof
QDP
                                                                                                                                                                                        ↳ Rewriting

Q DP problem:
The TRS P consists of the following rules:

F(pos(s(s(x0)))) → COND1(true, pos(s(s(x0))))
COND1(true, pos(s(s(z0)))) → COND2(equal_int(pos(mod_nat(z0, s(s(0)))), pos(0)), pos(s(s(z0))))
COND2(false, pos(s(s(z0)))) → F(pos(s(plus_nat(plus_nat(plus_nat(0, s(s(z0))), s(s(z0))), s(s(z0))))))

The TRS R consists of the following rules:

mod_nat(0, s(x)) → 0
mod_nat(s(x), s(y)) → if(greatereq_int(pos(x), pos(y)), mod_nat(minus_nat_s(x, y), s(y)), s(x))
equal_int(pos(0), pos(0)) → true
equal_int(pos(s(x)), pos(0)) → false
greatereq_int(pos(x), pos(0)) → true
greatereq_int(pos(0), pos(s(y))) → false
greatereq_int(pos(s(x)), pos(s(y))) → greatereq_int(pos(x), pos(y))
minus_nat_s(x, 0) → x
minus_nat_s(0, s(y)) → 0
minus_nat_s(s(x), s(y)) → minus_nat_s(x, y)
if(true, x, y) → x
if(false, x, y) → y
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))

The set Q consists of the following terms:

plus_nat(0, x0)
plus_nat(s(x0), x1)
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
if(true, x0, x1)
if(false, x0, x1)
minus_nat_s(x0, 0)
minus_nat_s(0, s(x0))
minus_nat_s(s(x0), s(x1))
equal_int(pos(0), pos(0))
equal_int(neg(0), pos(0))
equal_int(neg(0), neg(0))
equal_int(pos(0), neg(0))
equal_int(pos(0), pos(s(x0)))
equal_int(neg(0), pos(s(x0)))
equal_int(pos(0), neg(s(x0)))
equal_int(neg(0), neg(s(x0)))
equal_int(pos(s(x0)), pos(0))
equal_int(pos(s(x0)), neg(0))
equal_int(neg(s(x0)), pos(0))
equal_int(neg(s(x0)), neg(0))
equal_int(pos(s(x0)), neg(s(x1)))
equal_int(neg(s(x0)), pos(s(x1)))
equal_int(pos(s(x0)), pos(s(x1)))
equal_int(neg(s(x0)), neg(s(x1)))
mod_nat(0, s(x0))
mod_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
By rewriting [LPAR04] the rule COND2(false, pos(s(s(z0)))) → F(pos(s(plus_nat(plus_nat(plus_nat(0, s(s(z0))), s(s(z0))), s(s(z0)))))) at position [0,0,0,0,0] we obtained the following new rules [LPAR04]:

COND2(false, pos(s(s(z0)))) → F(pos(s(plus_nat(plus_nat(s(s(z0)), s(s(z0))), s(s(z0))))))



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ QDPOrderProof
                          ↳ QDP
                            ↳ UsableRulesProof
                              ↳ QDP
                                ↳ QReductionProof
                                  ↳ QDP
                                    ↳ RemovalProof
                                    ↳ RemovalProof
                                    ↳ Narrowing
                                      ↳ QDP
                                        ↳ DependencyGraphProof
                                          ↳ QDP
                                            ↳ UsableRulesProof
                                              ↳ QDP
                                                ↳ Narrowing
                                                  ↳ QDP
                                                    ↳ UsableRulesProof
                                                      ↳ QDP
                                                        ↳ QReductionProof
                                                          ↳ QDP
                                                            ↳ Rewriting
                                                              ↳ QDP
                                                                ↳ UsableRulesProof
                                                                  ↳ QDP
                                                                    ↳ Rewriting
                                                                      ↳ QDP
                                                                        ↳ UsableRulesProof
                                                                          ↳ QDP
                                                                            ↳ QReductionProof
                                                                              ↳ QDP
                                                                                ↳ Rewriting
                                                                                  ↳ QDP
                                                                                    ↳ Rewriting
                                                                                      ↳ QDP
                                                                                        ↳ Narrowing
                                                                                          ↳ QDP
                                                                                            ↳ DependencyGraphProof
                                                                                              ↳ QDP
                                                                                                ↳ UsableRulesProof
                                                                                                  ↳ QDP
                                                                                                    ↳ QReductionProof
                                                                                                      ↳ QDP
                                                                                                        ↳ Narrowing
                                                                                                          ↳ QDP
                                                                                                            ↳ DependencyGraphProof
                                                                                                              ↳ QDP
                                                                                                                ↳ UsableRulesProof
                                                                                                                  ↳ QDP
                                                                                                                    ↳ QReductionProof
                                                                                                                      ↳ QDP
                                                                                                                        ↳ Instantiation
                                                                                                                          ↳ QDP
                                                                                                                            ↳ Rewriting
                                                                                                                              ↳ QDP
                                                                                                                                ↳ Rewriting
                                                                                                                                  ↳ QDP
                                                                                                                                    ↳ Rewriting
                                                                                                                                      ↳ QDP
                                                                                                                                        ↳ Rewriting
                                                                                                                                          ↳ QDP
                                                                                                                                            ↳ Rewriting
                                                                                                                                              ↳ QDP
                                                                                                                                                ↳ Rewriting
                                                                                                                                                  ↳ QDP
                                                                                                                                                    ↳ Instantiation
                                                                                                                                                      ↳ QDP
                                                                                                                                                        ↳ UsableRulesProof
                                                                                                                                                          ↳ QDP
                                                                                                                                                            ↳ Rewriting
                                                                                                                                                              ↳ QDP
                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                  ↳ QDP
                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                      ↳ QDP
                                                                                                                                                                        ↳ UsableRulesProof
                                                                                                                                                                          ↳ QDP
                                                                                                                                                                            ↳ Rewriting
                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                ↳ UsableRulesProof
                                                                                                                                                                                  ↳ QDP
                                                                                                                                                                                    ↳ QReductionProof
                                                                                                                                                                                      ↳ QDP
                                                                                                                                                                                        ↳ Rewriting
QDP
                                                                                                                                                                                            ↳ Rewriting

Q DP problem:
The TRS P consists of the following rules:

F(pos(s(s(x0)))) → COND1(true, pos(s(s(x0))))
COND1(true, pos(s(s(z0)))) → COND2(equal_int(pos(mod_nat(z0, s(s(0)))), pos(0)), pos(s(s(z0))))
COND2(false, pos(s(s(z0)))) → F(pos(s(plus_nat(plus_nat(s(s(z0)), s(s(z0))), s(s(z0))))))

The TRS R consists of the following rules:

mod_nat(0, s(x)) → 0
mod_nat(s(x), s(y)) → if(greatereq_int(pos(x), pos(y)), mod_nat(minus_nat_s(x, y), s(y)), s(x))
equal_int(pos(0), pos(0)) → true
equal_int(pos(s(x)), pos(0)) → false
greatereq_int(pos(x), pos(0)) → true
greatereq_int(pos(0), pos(s(y))) → false
greatereq_int(pos(s(x)), pos(s(y))) → greatereq_int(pos(x), pos(y))
minus_nat_s(x, 0) → x
minus_nat_s(0, s(y)) → 0
minus_nat_s(s(x), s(y)) → minus_nat_s(x, y)
if(true, x, y) → x
if(false, x, y) → y
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))

The set Q consists of the following terms:

plus_nat(0, x0)
plus_nat(s(x0), x1)
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
if(true, x0, x1)
if(false, x0, x1)
minus_nat_s(x0, 0)
minus_nat_s(0, s(x0))
minus_nat_s(s(x0), s(x1))
equal_int(pos(0), pos(0))
equal_int(neg(0), pos(0))
equal_int(neg(0), neg(0))
equal_int(pos(0), neg(0))
equal_int(pos(0), pos(s(x0)))
equal_int(neg(0), pos(s(x0)))
equal_int(pos(0), neg(s(x0)))
equal_int(neg(0), neg(s(x0)))
equal_int(pos(s(x0)), pos(0))
equal_int(pos(s(x0)), neg(0))
equal_int(neg(s(x0)), pos(0))
equal_int(neg(s(x0)), neg(0))
equal_int(pos(s(x0)), neg(s(x1)))
equal_int(neg(s(x0)), pos(s(x1)))
equal_int(pos(s(x0)), pos(s(x1)))
equal_int(neg(s(x0)), neg(s(x1)))
mod_nat(0, s(x0))
mod_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
By rewriting [LPAR04] the rule COND2(false, pos(s(s(z0)))) → F(pos(s(plus_nat(plus_nat(s(s(z0)), s(s(z0))), s(s(z0)))))) at position [0,0,0,0] we obtained the following new rules [LPAR04]:

COND2(false, pos(s(s(z0)))) → F(pos(s(plus_nat(s(plus_nat(s(z0), s(s(z0)))), s(s(z0))))))



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ QDPOrderProof
                          ↳ QDP
                            ↳ UsableRulesProof
                              ↳ QDP
                                ↳ QReductionProof
                                  ↳ QDP
                                    ↳ RemovalProof
                                    ↳ RemovalProof
                                    ↳ Narrowing
                                      ↳ QDP
                                        ↳ DependencyGraphProof
                                          ↳ QDP
                                            ↳ UsableRulesProof
                                              ↳ QDP
                                                ↳ Narrowing
                                                  ↳ QDP
                                                    ↳ UsableRulesProof
                                                      ↳ QDP
                                                        ↳ QReductionProof
                                                          ↳ QDP
                                                            ↳ Rewriting
                                                              ↳ QDP
                                                                ↳ UsableRulesProof
                                                                  ↳ QDP
                                                                    ↳ Rewriting
                                                                      ↳ QDP
                                                                        ↳ UsableRulesProof
                                                                          ↳ QDP
                                                                            ↳ QReductionProof
                                                                              ↳ QDP
                                                                                ↳ Rewriting
                                                                                  ↳ QDP
                                                                                    ↳ Rewriting
                                                                                      ↳ QDP
                                                                                        ↳ Narrowing
                                                                                          ↳ QDP
                                                                                            ↳ DependencyGraphProof
                                                                                              ↳ QDP
                                                                                                ↳ UsableRulesProof
                                                                                                  ↳ QDP
                                                                                                    ↳ QReductionProof
                                                                                                      ↳ QDP
                                                                                                        ↳ Narrowing
                                                                                                          ↳ QDP
                                                                                                            ↳ DependencyGraphProof
                                                                                                              ↳ QDP
                                                                                                                ↳ UsableRulesProof
                                                                                                                  ↳ QDP
                                                                                                                    ↳ QReductionProof
                                                                                                                      ↳ QDP
                                                                                                                        ↳ Instantiation
                                                                                                                          ↳ QDP
                                                                                                                            ↳ Rewriting
                                                                                                                              ↳ QDP
                                                                                                                                ↳ Rewriting
                                                                                                                                  ↳ QDP
                                                                                                                                    ↳ Rewriting
                                                                                                                                      ↳ QDP
                                                                                                                                        ↳ Rewriting
                                                                                                                                          ↳ QDP
                                                                                                                                            ↳ Rewriting
                                                                                                                                              ↳ QDP
                                                                                                                                                ↳ Rewriting
                                                                                                                                                  ↳ QDP
                                                                                                                                                    ↳ Instantiation
                                                                                                                                                      ↳ QDP
                                                                                                                                                        ↳ UsableRulesProof
                                                                                                                                                          ↳ QDP
                                                                                                                                                            ↳ Rewriting
                                                                                                                                                              ↳ QDP
                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                  ↳ QDP
                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                      ↳ QDP
                                                                                                                                                                        ↳ UsableRulesProof
                                                                                                                                                                          ↳ QDP
                                                                                                                                                                            ↳ Rewriting
                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                ↳ UsableRulesProof
                                                                                                                                                                                  ↳ QDP
                                                                                                                                                                                    ↳ QReductionProof
                                                                                                                                                                                      ↳ QDP
                                                                                                                                                                                        ↳ Rewriting
                                                                                                                                                                                          ↳ QDP
                                                                                                                                                                                            ↳ Rewriting
QDP
                                                                                                                                                                                                ↳ Rewriting

Q DP problem:
The TRS P consists of the following rules:

F(pos(s(s(x0)))) → COND1(true, pos(s(s(x0))))
COND1(true, pos(s(s(z0)))) → COND2(equal_int(pos(mod_nat(z0, s(s(0)))), pos(0)), pos(s(s(z0))))
COND2(false, pos(s(s(z0)))) → F(pos(s(plus_nat(s(plus_nat(s(z0), s(s(z0)))), s(s(z0))))))

The TRS R consists of the following rules:

mod_nat(0, s(x)) → 0
mod_nat(s(x), s(y)) → if(greatereq_int(pos(x), pos(y)), mod_nat(minus_nat_s(x, y), s(y)), s(x))
equal_int(pos(0), pos(0)) → true
equal_int(pos(s(x)), pos(0)) → false
greatereq_int(pos(x), pos(0)) → true
greatereq_int(pos(0), pos(s(y))) → false
greatereq_int(pos(s(x)), pos(s(y))) → greatereq_int(pos(x), pos(y))
minus_nat_s(x, 0) → x
minus_nat_s(0, s(y)) → 0
minus_nat_s(s(x), s(y)) → minus_nat_s(x, y)
if(true, x, y) → x
if(false, x, y) → y
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))

The set Q consists of the following terms:

plus_nat(0, x0)
plus_nat(s(x0), x1)
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
if(true, x0, x1)
if(false, x0, x1)
minus_nat_s(x0, 0)
minus_nat_s(0, s(x0))
minus_nat_s(s(x0), s(x1))
equal_int(pos(0), pos(0))
equal_int(neg(0), pos(0))
equal_int(neg(0), neg(0))
equal_int(pos(0), neg(0))
equal_int(pos(0), pos(s(x0)))
equal_int(neg(0), pos(s(x0)))
equal_int(pos(0), neg(s(x0)))
equal_int(neg(0), neg(s(x0)))
equal_int(pos(s(x0)), pos(0))
equal_int(pos(s(x0)), neg(0))
equal_int(neg(s(x0)), pos(0))
equal_int(neg(s(x0)), neg(0))
equal_int(pos(s(x0)), neg(s(x1)))
equal_int(neg(s(x0)), pos(s(x1)))
equal_int(pos(s(x0)), pos(s(x1)))
equal_int(neg(s(x0)), neg(s(x1)))
mod_nat(0, s(x0))
mod_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
By rewriting [LPAR04] the rule COND2(false, pos(s(s(z0)))) → F(pos(s(plus_nat(s(plus_nat(s(z0), s(s(z0)))), s(s(z0)))))) at position [0,0,0] we obtained the following new rules [LPAR04]:

COND2(false, pos(s(s(z0)))) → F(pos(s(s(plus_nat(plus_nat(s(z0), s(s(z0))), s(s(z0)))))))



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ QDPOrderProof
                          ↳ QDP
                            ↳ UsableRulesProof
                              ↳ QDP
                                ↳ QReductionProof
                                  ↳ QDP
                                    ↳ RemovalProof
                                    ↳ RemovalProof
                                    ↳ Narrowing
                                      ↳ QDP
                                        ↳ DependencyGraphProof
                                          ↳ QDP
                                            ↳ UsableRulesProof
                                              ↳ QDP
                                                ↳ Narrowing
                                                  ↳ QDP
                                                    ↳ UsableRulesProof
                                                      ↳ QDP
                                                        ↳ QReductionProof
                                                          ↳ QDP
                                                            ↳ Rewriting
                                                              ↳ QDP
                                                                ↳ UsableRulesProof
                                                                  ↳ QDP
                                                                    ↳ Rewriting
                                                                      ↳ QDP
                                                                        ↳ UsableRulesProof
                                                                          ↳ QDP
                                                                            ↳ QReductionProof
                                                                              ↳ QDP
                                                                                ↳ Rewriting
                                                                                  ↳ QDP
                                                                                    ↳ Rewriting
                                                                                      ↳ QDP
                                                                                        ↳ Narrowing
                                                                                          ↳ QDP
                                                                                            ↳ DependencyGraphProof
                                                                                              ↳ QDP
                                                                                                ↳ UsableRulesProof
                                                                                                  ↳ QDP
                                                                                                    ↳ QReductionProof
                                                                                                      ↳ QDP
                                                                                                        ↳ Narrowing
                                                                                                          ↳ QDP
                                                                                                            ↳ DependencyGraphProof
                                                                                                              ↳ QDP
                                                                                                                ↳ UsableRulesProof
                                                                                                                  ↳ QDP
                                                                                                                    ↳ QReductionProof
                                                                                                                      ↳ QDP
                                                                                                                        ↳ Instantiation
                                                                                                                          ↳ QDP
                                                                                                                            ↳ Rewriting
                                                                                                                              ↳ QDP
                                                                                                                                ↳ Rewriting
                                                                                                                                  ↳ QDP
                                                                                                                                    ↳ Rewriting
                                                                                                                                      ↳ QDP
                                                                                                                                        ↳ Rewriting
                                                                                                                                          ↳ QDP
                                                                                                                                            ↳ Rewriting
                                                                                                                                              ↳ QDP
                                                                                                                                                ↳ Rewriting
                                                                                                                                                  ↳ QDP
                                                                                                                                                    ↳ Instantiation
                                                                                                                                                      ↳ QDP
                                                                                                                                                        ↳ UsableRulesProof
                                                                                                                                                          ↳ QDP
                                                                                                                                                            ↳ Rewriting
                                                                                                                                                              ↳ QDP
                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                  ↳ QDP
                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                      ↳ QDP
                                                                                                                                                                        ↳ UsableRulesProof
                                                                                                                                                                          ↳ QDP
                                                                                                                                                                            ↳ Rewriting
                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                ↳ UsableRulesProof
                                                                                                                                                                                  ↳ QDP
                                                                                                                                                                                    ↳ QReductionProof
                                                                                                                                                                                      ↳ QDP
                                                                                                                                                                                        ↳ Rewriting
                                                                                                                                                                                          ↳ QDP
                                                                                                                                                                                            ↳ Rewriting
                                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                                ↳ Rewriting
QDP
                                                                                                                                                                                                    ↳ Rewriting

Q DP problem:
The TRS P consists of the following rules:

F(pos(s(s(x0)))) → COND1(true, pos(s(s(x0))))
COND1(true, pos(s(s(z0)))) → COND2(equal_int(pos(mod_nat(z0, s(s(0)))), pos(0)), pos(s(s(z0))))
COND2(false, pos(s(s(z0)))) → F(pos(s(s(plus_nat(plus_nat(s(z0), s(s(z0))), s(s(z0)))))))

The TRS R consists of the following rules:

mod_nat(0, s(x)) → 0
mod_nat(s(x), s(y)) → if(greatereq_int(pos(x), pos(y)), mod_nat(minus_nat_s(x, y), s(y)), s(x))
equal_int(pos(0), pos(0)) → true
equal_int(pos(s(x)), pos(0)) → false
greatereq_int(pos(x), pos(0)) → true
greatereq_int(pos(0), pos(s(y))) → false
greatereq_int(pos(s(x)), pos(s(y))) → greatereq_int(pos(x), pos(y))
minus_nat_s(x, 0) → x
minus_nat_s(0, s(y)) → 0
minus_nat_s(s(x), s(y)) → minus_nat_s(x, y)
if(true, x, y) → x
if(false, x, y) → y
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))

The set Q consists of the following terms:

plus_nat(0, x0)
plus_nat(s(x0), x1)
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
if(true, x0, x1)
if(false, x0, x1)
minus_nat_s(x0, 0)
minus_nat_s(0, s(x0))
minus_nat_s(s(x0), s(x1))
equal_int(pos(0), pos(0))
equal_int(neg(0), pos(0))
equal_int(neg(0), neg(0))
equal_int(pos(0), neg(0))
equal_int(pos(0), pos(s(x0)))
equal_int(neg(0), pos(s(x0)))
equal_int(pos(0), neg(s(x0)))
equal_int(neg(0), neg(s(x0)))
equal_int(pos(s(x0)), pos(0))
equal_int(pos(s(x0)), neg(0))
equal_int(neg(s(x0)), pos(0))
equal_int(neg(s(x0)), neg(0))
equal_int(pos(s(x0)), neg(s(x1)))
equal_int(neg(s(x0)), pos(s(x1)))
equal_int(pos(s(x0)), pos(s(x1)))
equal_int(neg(s(x0)), neg(s(x1)))
mod_nat(0, s(x0))
mod_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
By rewriting [LPAR04] the rule COND2(false, pos(s(s(z0)))) → F(pos(s(s(plus_nat(plus_nat(s(z0), s(s(z0))), s(s(z0))))))) at position [0,0,0,0,0] we obtained the following new rules [LPAR04]:

COND2(false, pos(s(s(z0)))) → F(pos(s(s(plus_nat(s(plus_nat(z0, s(s(z0)))), s(s(z0)))))))



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ QDPOrderProof
                          ↳ QDP
                            ↳ UsableRulesProof
                              ↳ QDP
                                ↳ QReductionProof
                                  ↳ QDP
                                    ↳ RemovalProof
                                    ↳ RemovalProof
                                    ↳ Narrowing
                                      ↳ QDP
                                        ↳ DependencyGraphProof
                                          ↳ QDP
                                            ↳ UsableRulesProof
                                              ↳ QDP
                                                ↳ Narrowing
                                                  ↳ QDP
                                                    ↳ UsableRulesProof
                                                      ↳ QDP
                                                        ↳ QReductionProof
                                                          ↳ QDP
                                                            ↳ Rewriting
                                                              ↳ QDP
                                                                ↳ UsableRulesProof
                                                                  ↳ QDP
                                                                    ↳ Rewriting
                                                                      ↳ QDP
                                                                        ↳ UsableRulesProof
                                                                          ↳ QDP
                                                                            ↳ QReductionProof
                                                                              ↳ QDP
                                                                                ↳ Rewriting
                                                                                  ↳ QDP
                                                                                    ↳ Rewriting
                                                                                      ↳ QDP
                                                                                        ↳ Narrowing
                                                                                          ↳ QDP
                                                                                            ↳ DependencyGraphProof
                                                                                              ↳ QDP
                                                                                                ↳ UsableRulesProof
                                                                                                  ↳ QDP
                                                                                                    ↳ QReductionProof
                                                                                                      ↳ QDP
                                                                                                        ↳ Narrowing
                                                                                                          ↳ QDP
                                                                                                            ↳ DependencyGraphProof
                                                                                                              ↳ QDP
                                                                                                                ↳ UsableRulesProof
                                                                                                                  ↳ QDP
                                                                                                                    ↳ QReductionProof
                                                                                                                      ↳ QDP
                                                                                                                        ↳ Instantiation
                                                                                                                          ↳ QDP
                                                                                                                            ↳ Rewriting
                                                                                                                              ↳ QDP
                                                                                                                                ↳ Rewriting
                                                                                                                                  ↳ QDP
                                                                                                                                    ↳ Rewriting
                                                                                                                                      ↳ QDP
                                                                                                                                        ↳ Rewriting
                                                                                                                                          ↳ QDP
                                                                                                                                            ↳ Rewriting
                                                                                                                                              ↳ QDP
                                                                                                                                                ↳ Rewriting
                                                                                                                                                  ↳ QDP
                                                                                                                                                    ↳ Instantiation
                                                                                                                                                      ↳ QDP
                                                                                                                                                        ↳ UsableRulesProof
                                                                                                                                                          ↳ QDP
                                                                                                                                                            ↳ Rewriting
                                                                                                                                                              ↳ QDP
                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                  ↳ QDP
                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                      ↳ QDP
                                                                                                                                                                        ↳ UsableRulesProof
                                                                                                                                                                          ↳ QDP
                                                                                                                                                                            ↳ Rewriting
                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                ↳ UsableRulesProof
                                                                                                                                                                                  ↳ QDP
                                                                                                                                                                                    ↳ QReductionProof
                                                                                                                                                                                      ↳ QDP
                                                                                                                                                                                        ↳ Rewriting
                                                                                                                                                                                          ↳ QDP
                                                                                                                                                                                            ↳ Rewriting
                                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                                                  ↳ QDP
                                                                                                                                                                                                    ↳ Rewriting
QDP
                                                                                                                                                                                                        ↳ Rewriting

Q DP problem:
The TRS P consists of the following rules:

F(pos(s(s(x0)))) → COND1(true, pos(s(s(x0))))
COND1(true, pos(s(s(z0)))) → COND2(equal_int(pos(mod_nat(z0, s(s(0)))), pos(0)), pos(s(s(z0))))
COND2(false, pos(s(s(z0)))) → F(pos(s(s(plus_nat(s(plus_nat(z0, s(s(z0)))), s(s(z0)))))))

The TRS R consists of the following rules:

mod_nat(0, s(x)) → 0
mod_nat(s(x), s(y)) → if(greatereq_int(pos(x), pos(y)), mod_nat(minus_nat_s(x, y), s(y)), s(x))
equal_int(pos(0), pos(0)) → true
equal_int(pos(s(x)), pos(0)) → false
greatereq_int(pos(x), pos(0)) → true
greatereq_int(pos(0), pos(s(y))) → false
greatereq_int(pos(s(x)), pos(s(y))) → greatereq_int(pos(x), pos(y))
minus_nat_s(x, 0) → x
minus_nat_s(0, s(y)) → 0
minus_nat_s(s(x), s(y)) → minus_nat_s(x, y)
if(true, x, y) → x
if(false, x, y) → y
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))

The set Q consists of the following terms:

plus_nat(0, x0)
plus_nat(s(x0), x1)
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
if(true, x0, x1)
if(false, x0, x1)
minus_nat_s(x0, 0)
minus_nat_s(0, s(x0))
minus_nat_s(s(x0), s(x1))
equal_int(pos(0), pos(0))
equal_int(neg(0), pos(0))
equal_int(neg(0), neg(0))
equal_int(pos(0), neg(0))
equal_int(pos(0), pos(s(x0)))
equal_int(neg(0), pos(s(x0)))
equal_int(pos(0), neg(s(x0)))
equal_int(neg(0), neg(s(x0)))
equal_int(pos(s(x0)), pos(0))
equal_int(pos(s(x0)), neg(0))
equal_int(neg(s(x0)), pos(0))
equal_int(neg(s(x0)), neg(0))
equal_int(pos(s(x0)), neg(s(x1)))
equal_int(neg(s(x0)), pos(s(x1)))
equal_int(pos(s(x0)), pos(s(x1)))
equal_int(neg(s(x0)), neg(s(x1)))
mod_nat(0, s(x0))
mod_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
By rewriting [LPAR04] the rule COND2(false, pos(s(s(z0)))) → F(pos(s(s(plus_nat(s(plus_nat(z0, s(s(z0)))), s(s(z0))))))) at position [0,0,0,0] we obtained the following new rules [LPAR04]:

COND2(false, pos(s(s(z0)))) → F(pos(s(s(s(plus_nat(plus_nat(z0, s(s(z0))), s(s(z0))))))))



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ QDPOrderProof
                          ↳ QDP
                            ↳ UsableRulesProof
                              ↳ QDP
                                ↳ QReductionProof
                                  ↳ QDP
                                    ↳ RemovalProof
                                    ↳ RemovalProof
                                    ↳ Narrowing
                                      ↳ QDP
                                        ↳ DependencyGraphProof
                                          ↳ QDP
                                            ↳ UsableRulesProof
                                              ↳ QDP
                                                ↳ Narrowing
                                                  ↳ QDP
                                                    ↳ UsableRulesProof
                                                      ↳ QDP
                                                        ↳ QReductionProof
                                                          ↳ QDP
                                                            ↳ Rewriting
                                                              ↳ QDP
                                                                ↳ UsableRulesProof
                                                                  ↳ QDP
                                                                    ↳ Rewriting
                                                                      ↳ QDP
                                                                        ↳ UsableRulesProof
                                                                          ↳ QDP
                                                                            ↳ QReductionProof
                                                                              ↳ QDP
                                                                                ↳ Rewriting
                                                                                  ↳ QDP
                                                                                    ↳ Rewriting
                                                                                      ↳ QDP
                                                                                        ↳ Narrowing
                                                                                          ↳ QDP
                                                                                            ↳ DependencyGraphProof
                                                                                              ↳ QDP
                                                                                                ↳ UsableRulesProof
                                                                                                  ↳ QDP
                                                                                                    ↳ QReductionProof
                                                                                                      ↳ QDP
                                                                                                        ↳ Narrowing
                                                                                                          ↳ QDP
                                                                                                            ↳ DependencyGraphProof
                                                                                                              ↳ QDP
                                                                                                                ↳ UsableRulesProof
                                                                                                                  ↳ QDP
                                                                                                                    ↳ QReductionProof
                                                                                                                      ↳ QDP
                                                                                                                        ↳ Instantiation
                                                                                                                          ↳ QDP
                                                                                                                            ↳ Rewriting
                                                                                                                              ↳ QDP
                                                                                                                                ↳ Rewriting
                                                                                                                                  ↳ QDP
                                                                                                                                    ↳ Rewriting
                                                                                                                                      ↳ QDP
                                                                                                                                        ↳ Rewriting
                                                                                                                                          ↳ QDP
                                                                                                                                            ↳ Rewriting
                                                                                                                                              ↳ QDP
                                                                                                                                                ↳ Rewriting
                                                                                                                                                  ↳ QDP
                                                                                                                                                    ↳ Instantiation
                                                                                                                                                      ↳ QDP
                                                                                                                                                        ↳ UsableRulesProof
                                                                                                                                                          ↳ QDP
                                                                                                                                                            ↳ Rewriting
                                                                                                                                                              ↳ QDP
                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                  ↳ QDP
                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                      ↳ QDP
                                                                                                                                                                        ↳ UsableRulesProof
                                                                                                                                                                          ↳ QDP
                                                                                                                                                                            ↳ Rewriting
                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                ↳ UsableRulesProof
                                                                                                                                                                                  ↳ QDP
                                                                                                                                                                                    ↳ QReductionProof
                                                                                                                                                                                      ↳ QDP
                                                                                                                                                                                        ↳ Rewriting
                                                                                                                                                                                          ↳ QDP
                                                                                                                                                                                            ↳ Rewriting
                                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                                                  ↳ QDP
                                                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                                                      ↳ QDP
                                                                                                                                                                                                        ↳ Rewriting
QDP
                                                                                                                                                                                                            ↳ Instantiation

Q DP problem:
The TRS P consists of the following rules:

F(pos(s(s(x0)))) → COND1(true, pos(s(s(x0))))
COND1(true, pos(s(s(z0)))) → COND2(equal_int(pos(mod_nat(z0, s(s(0)))), pos(0)), pos(s(s(z0))))
COND2(false, pos(s(s(z0)))) → F(pos(s(s(s(plus_nat(plus_nat(z0, s(s(z0))), s(s(z0))))))))

The TRS R consists of the following rules:

mod_nat(0, s(x)) → 0
mod_nat(s(x), s(y)) → if(greatereq_int(pos(x), pos(y)), mod_nat(minus_nat_s(x, y), s(y)), s(x))
equal_int(pos(0), pos(0)) → true
equal_int(pos(s(x)), pos(0)) → false
greatereq_int(pos(x), pos(0)) → true
greatereq_int(pos(0), pos(s(y))) → false
greatereq_int(pos(s(x)), pos(s(y))) → greatereq_int(pos(x), pos(y))
minus_nat_s(x, 0) → x
minus_nat_s(0, s(y)) → 0
minus_nat_s(s(x), s(y)) → minus_nat_s(x, y)
if(true, x, y) → x
if(false, x, y) → y
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))

The set Q consists of the following terms:

plus_nat(0, x0)
plus_nat(s(x0), x1)
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
if(true, x0, x1)
if(false, x0, x1)
minus_nat_s(x0, 0)
minus_nat_s(0, s(x0))
minus_nat_s(s(x0), s(x1))
equal_int(pos(0), pos(0))
equal_int(neg(0), pos(0))
equal_int(neg(0), neg(0))
equal_int(pos(0), neg(0))
equal_int(pos(0), pos(s(x0)))
equal_int(neg(0), pos(s(x0)))
equal_int(pos(0), neg(s(x0)))
equal_int(neg(0), neg(s(x0)))
equal_int(pos(s(x0)), pos(0))
equal_int(pos(s(x0)), neg(0))
equal_int(neg(s(x0)), pos(0))
equal_int(neg(s(x0)), neg(0))
equal_int(pos(s(x0)), neg(s(x1)))
equal_int(neg(s(x0)), pos(s(x1)))
equal_int(pos(s(x0)), pos(s(x1)))
equal_int(neg(s(x0)), neg(s(x1)))
mod_nat(0, s(x0))
mod_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
By instantiating [LPAR04] the rule F(pos(s(s(x0)))) → COND1(true, pos(s(s(x0)))) we obtained the following new rules [LPAR04]:

F(pos(s(s(s(y_1))))) → COND1(true, pos(s(s(s(y_1)))))



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ QDPOrderProof
                          ↳ QDP
                            ↳ UsableRulesProof
                              ↳ QDP
                                ↳ QReductionProof
                                  ↳ QDP
                                    ↳ RemovalProof
                                    ↳ RemovalProof
                                    ↳ Narrowing
                                      ↳ QDP
                                        ↳ DependencyGraphProof
                                          ↳ QDP
                                            ↳ UsableRulesProof
                                              ↳ QDP
                                                ↳ Narrowing
                                                  ↳ QDP
                                                    ↳ UsableRulesProof
                                                      ↳ QDP
                                                        ↳ QReductionProof
                                                          ↳ QDP
                                                            ↳ Rewriting
                                                              ↳ QDP
                                                                ↳ UsableRulesProof
                                                                  ↳ QDP
                                                                    ↳ Rewriting
                                                                      ↳ QDP
                                                                        ↳ UsableRulesProof
                                                                          ↳ QDP
                                                                            ↳ QReductionProof
                                                                              ↳ QDP
                                                                                ↳ Rewriting
                                                                                  ↳ QDP
                                                                                    ↳ Rewriting
                                                                                      ↳ QDP
                                                                                        ↳ Narrowing
                                                                                          ↳ QDP
                                                                                            ↳ DependencyGraphProof
                                                                                              ↳ QDP
                                                                                                ↳ UsableRulesProof
                                                                                                  ↳ QDP
                                                                                                    ↳ QReductionProof
                                                                                                      ↳ QDP
                                                                                                        ↳ Narrowing
                                                                                                          ↳ QDP
                                                                                                            ↳ DependencyGraphProof
                                                                                                              ↳ QDP
                                                                                                                ↳ UsableRulesProof
                                                                                                                  ↳ QDP
                                                                                                                    ↳ QReductionProof
                                                                                                                      ↳ QDP
                                                                                                                        ↳ Instantiation
                                                                                                                          ↳ QDP
                                                                                                                            ↳ Rewriting
                                                                                                                              ↳ QDP
                                                                                                                                ↳ Rewriting
                                                                                                                                  ↳ QDP
                                                                                                                                    ↳ Rewriting
                                                                                                                                      ↳ QDP
                                                                                                                                        ↳ Rewriting
                                                                                                                                          ↳ QDP
                                                                                                                                            ↳ Rewriting
                                                                                                                                              ↳ QDP
                                                                                                                                                ↳ Rewriting
                                                                                                                                                  ↳ QDP
                                                                                                                                                    ↳ Instantiation
                                                                                                                                                      ↳ QDP
                                                                                                                                                        ↳ UsableRulesProof
                                                                                                                                                          ↳ QDP
                                                                                                                                                            ↳ Rewriting
                                                                                                                                                              ↳ QDP
                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                  ↳ QDP
                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                      ↳ QDP
                                                                                                                                                                        ↳ UsableRulesProof
                                                                                                                                                                          ↳ QDP
                                                                                                                                                                            ↳ Rewriting
                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                ↳ UsableRulesProof
                                                                                                                                                                                  ↳ QDP
                                                                                                                                                                                    ↳ QReductionProof
                                                                                                                                                                                      ↳ QDP
                                                                                                                                                                                        ↳ Rewriting
                                                                                                                                                                                          ↳ QDP
                                                                                                                                                                                            ↳ Rewriting
                                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                                                  ↳ QDP
                                                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                                                      ↳ QDP
                                                                                                                                                                                                        ↳ Rewriting
                                                                                                                                                                                                          ↳ QDP
                                                                                                                                                                                                            ↳ Instantiation
QDP
                                                                                                                                                                                                                ↳ Instantiation

Q DP problem:
The TRS P consists of the following rules:

COND1(true, pos(s(s(z0)))) → COND2(equal_int(pos(mod_nat(z0, s(s(0)))), pos(0)), pos(s(s(z0))))
COND2(false, pos(s(s(z0)))) → F(pos(s(s(s(plus_nat(plus_nat(z0, s(s(z0))), s(s(z0))))))))
F(pos(s(s(s(y_1))))) → COND1(true, pos(s(s(s(y_1)))))

The TRS R consists of the following rules:

mod_nat(0, s(x)) → 0
mod_nat(s(x), s(y)) → if(greatereq_int(pos(x), pos(y)), mod_nat(minus_nat_s(x, y), s(y)), s(x))
equal_int(pos(0), pos(0)) → true
equal_int(pos(s(x)), pos(0)) → false
greatereq_int(pos(x), pos(0)) → true
greatereq_int(pos(0), pos(s(y))) → false
greatereq_int(pos(s(x)), pos(s(y))) → greatereq_int(pos(x), pos(y))
minus_nat_s(x, 0) → x
minus_nat_s(0, s(y)) → 0
minus_nat_s(s(x), s(y)) → minus_nat_s(x, y)
if(true, x, y) → x
if(false, x, y) → y
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))

The set Q consists of the following terms:

plus_nat(0, x0)
plus_nat(s(x0), x1)
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
if(true, x0, x1)
if(false, x0, x1)
minus_nat_s(x0, 0)
minus_nat_s(0, s(x0))
minus_nat_s(s(x0), s(x1))
equal_int(pos(0), pos(0))
equal_int(neg(0), pos(0))
equal_int(neg(0), neg(0))
equal_int(pos(0), neg(0))
equal_int(pos(0), pos(s(x0)))
equal_int(neg(0), pos(s(x0)))
equal_int(pos(0), neg(s(x0)))
equal_int(neg(0), neg(s(x0)))
equal_int(pos(s(x0)), pos(0))
equal_int(pos(s(x0)), neg(0))
equal_int(neg(s(x0)), pos(0))
equal_int(neg(s(x0)), neg(0))
equal_int(pos(s(x0)), neg(s(x1)))
equal_int(neg(s(x0)), pos(s(x1)))
equal_int(pos(s(x0)), pos(s(x1)))
equal_int(neg(s(x0)), neg(s(x1)))
mod_nat(0, s(x0))
mod_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
By instantiating [LPAR04] the rule COND1(true, pos(s(s(z0)))) → COND2(equal_int(pos(mod_nat(z0, s(s(0)))), pos(0)), pos(s(s(z0)))) we obtained the following new rules [LPAR04]:

COND1(true, pos(s(s(s(z0))))) → COND2(equal_int(pos(mod_nat(s(z0), s(s(0)))), pos(0)), pos(s(s(s(z0)))))



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ QDPOrderProof
                          ↳ QDP
                            ↳ UsableRulesProof
                              ↳ QDP
                                ↳ QReductionProof
                                  ↳ QDP
                                    ↳ RemovalProof
                                    ↳ RemovalProof
                                    ↳ Narrowing
                                      ↳ QDP
                                        ↳ DependencyGraphProof
                                          ↳ QDP
                                            ↳ UsableRulesProof
                                              ↳ QDP
                                                ↳ Narrowing
                                                  ↳ QDP
                                                    ↳ UsableRulesProof
                                                      ↳ QDP
                                                        ↳ QReductionProof
                                                          ↳ QDP
                                                            ↳ Rewriting
                                                              ↳ QDP
                                                                ↳ UsableRulesProof
                                                                  ↳ QDP
                                                                    ↳ Rewriting
                                                                      ↳ QDP
                                                                        ↳ UsableRulesProof
                                                                          ↳ QDP
                                                                            ↳ QReductionProof
                                                                              ↳ QDP
                                                                                ↳ Rewriting
                                                                                  ↳ QDP
                                                                                    ↳ Rewriting
                                                                                      ↳ QDP
                                                                                        ↳ Narrowing
                                                                                          ↳ QDP
                                                                                            ↳ DependencyGraphProof
                                                                                              ↳ QDP
                                                                                                ↳ UsableRulesProof
                                                                                                  ↳ QDP
                                                                                                    ↳ QReductionProof
                                                                                                      ↳ QDP
                                                                                                        ↳ Narrowing
                                                                                                          ↳ QDP
                                                                                                            ↳ DependencyGraphProof
                                                                                                              ↳ QDP
                                                                                                                ↳ UsableRulesProof
                                                                                                                  ↳ QDP
                                                                                                                    ↳ QReductionProof
                                                                                                                      ↳ QDP
                                                                                                                        ↳ Instantiation
                                                                                                                          ↳ QDP
                                                                                                                            ↳ Rewriting
                                                                                                                              ↳ QDP
                                                                                                                                ↳ Rewriting
                                                                                                                                  ↳ QDP
                                                                                                                                    ↳ Rewriting
                                                                                                                                      ↳ QDP
                                                                                                                                        ↳ Rewriting
                                                                                                                                          ↳ QDP
                                                                                                                                            ↳ Rewriting
                                                                                                                                              ↳ QDP
                                                                                                                                                ↳ Rewriting
                                                                                                                                                  ↳ QDP
                                                                                                                                                    ↳ Instantiation
                                                                                                                                                      ↳ QDP
                                                                                                                                                        ↳ UsableRulesProof
                                                                                                                                                          ↳ QDP
                                                                                                                                                            ↳ Rewriting
                                                                                                                                                              ↳ QDP
                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                  ↳ QDP
                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                      ↳ QDP
                                                                                                                                                                        ↳ UsableRulesProof
                                                                                                                                                                          ↳ QDP
                                                                                                                                                                            ↳ Rewriting
                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                ↳ UsableRulesProof
                                                                                                                                                                                  ↳ QDP
                                                                                                                                                                                    ↳ QReductionProof
                                                                                                                                                                                      ↳ QDP
                                                                                                                                                                                        ↳ Rewriting
                                                                                                                                                                                          ↳ QDP
                                                                                                                                                                                            ↳ Rewriting
                                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                                                  ↳ QDP
                                                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                                                      ↳ QDP
                                                                                                                                                                                                        ↳ Rewriting
                                                                                                                                                                                                          ↳ QDP
                                                                                                                                                                                                            ↳ Instantiation
                                                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                                                ↳ Instantiation
QDP
                                                                                                                                                                                                                    ↳ Rewriting

Q DP problem:
The TRS P consists of the following rules:

COND2(false, pos(s(s(z0)))) → F(pos(s(s(s(plus_nat(plus_nat(z0, s(s(z0))), s(s(z0))))))))
F(pos(s(s(s(y_1))))) → COND1(true, pos(s(s(s(y_1)))))
COND1(true, pos(s(s(s(z0))))) → COND2(equal_int(pos(mod_nat(s(z0), s(s(0)))), pos(0)), pos(s(s(s(z0)))))

The TRS R consists of the following rules:

mod_nat(0, s(x)) → 0
mod_nat(s(x), s(y)) → if(greatereq_int(pos(x), pos(y)), mod_nat(minus_nat_s(x, y), s(y)), s(x))
equal_int(pos(0), pos(0)) → true
equal_int(pos(s(x)), pos(0)) → false
greatereq_int(pos(x), pos(0)) → true
greatereq_int(pos(0), pos(s(y))) → false
greatereq_int(pos(s(x)), pos(s(y))) → greatereq_int(pos(x), pos(y))
minus_nat_s(x, 0) → x
minus_nat_s(0, s(y)) → 0
minus_nat_s(s(x), s(y)) → minus_nat_s(x, y)
if(true, x, y) → x
if(false, x, y) → y
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))

The set Q consists of the following terms:

plus_nat(0, x0)
plus_nat(s(x0), x1)
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
if(true, x0, x1)
if(false, x0, x1)
minus_nat_s(x0, 0)
minus_nat_s(0, s(x0))
minus_nat_s(s(x0), s(x1))
equal_int(pos(0), pos(0))
equal_int(neg(0), pos(0))
equal_int(neg(0), neg(0))
equal_int(pos(0), neg(0))
equal_int(pos(0), pos(s(x0)))
equal_int(neg(0), pos(s(x0)))
equal_int(pos(0), neg(s(x0)))
equal_int(neg(0), neg(s(x0)))
equal_int(pos(s(x0)), pos(0))
equal_int(pos(s(x0)), neg(0))
equal_int(neg(s(x0)), pos(0))
equal_int(neg(s(x0)), neg(0))
equal_int(pos(s(x0)), neg(s(x1)))
equal_int(neg(s(x0)), pos(s(x1)))
equal_int(pos(s(x0)), pos(s(x1)))
equal_int(neg(s(x0)), neg(s(x1)))
mod_nat(0, s(x0))
mod_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
By rewriting [LPAR04] the rule COND1(true, pos(s(s(s(z0))))) → COND2(equal_int(pos(mod_nat(s(z0), s(s(0)))), pos(0)), pos(s(s(s(z0))))) at position [0,0,0] we obtained the following new rules [LPAR04]:

COND1(true, pos(s(s(s(z0))))) → COND2(equal_int(pos(if(greatereq_int(pos(z0), pos(s(0))), mod_nat(minus_nat_s(z0, s(0)), s(s(0))), s(z0))), pos(0)), pos(s(s(s(z0)))))



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ QDPOrderProof
                          ↳ QDP
                            ↳ UsableRulesProof
                              ↳ QDP
                                ↳ QReductionProof
                                  ↳ QDP
                                    ↳ RemovalProof
                                    ↳ RemovalProof
                                    ↳ Narrowing
                                      ↳ QDP
                                        ↳ DependencyGraphProof
                                          ↳ QDP
                                            ↳ UsableRulesProof
                                              ↳ QDP
                                                ↳ Narrowing
                                                  ↳ QDP
                                                    ↳ UsableRulesProof
                                                      ↳ QDP
                                                        ↳ QReductionProof
                                                          ↳ QDP
                                                            ↳ Rewriting
                                                              ↳ QDP
                                                                ↳ UsableRulesProof
                                                                  ↳ QDP
                                                                    ↳ Rewriting
                                                                      ↳ QDP
                                                                        ↳ UsableRulesProof
                                                                          ↳ QDP
                                                                            ↳ QReductionProof
                                                                              ↳ QDP
                                                                                ↳ Rewriting
                                                                                  ↳ QDP
                                                                                    ↳ Rewriting
                                                                                      ↳ QDP
                                                                                        ↳ Narrowing
                                                                                          ↳ QDP
                                                                                            ↳ DependencyGraphProof
                                                                                              ↳ QDP
                                                                                                ↳ UsableRulesProof
                                                                                                  ↳ QDP
                                                                                                    ↳ QReductionProof
                                                                                                      ↳ QDP
                                                                                                        ↳ Narrowing
                                                                                                          ↳ QDP
                                                                                                            ↳ DependencyGraphProof
                                                                                                              ↳ QDP
                                                                                                                ↳ UsableRulesProof
                                                                                                                  ↳ QDP
                                                                                                                    ↳ QReductionProof
                                                                                                                      ↳ QDP
                                                                                                                        ↳ Instantiation
                                                                                                                          ↳ QDP
                                                                                                                            ↳ Rewriting
                                                                                                                              ↳ QDP
                                                                                                                                ↳ Rewriting
                                                                                                                                  ↳ QDP
                                                                                                                                    ↳ Rewriting
                                                                                                                                      ↳ QDP
                                                                                                                                        ↳ Rewriting
                                                                                                                                          ↳ QDP
                                                                                                                                            ↳ Rewriting
                                                                                                                                              ↳ QDP
                                                                                                                                                ↳ Rewriting
                                                                                                                                                  ↳ QDP
                                                                                                                                                    ↳ Instantiation
                                                                                                                                                      ↳ QDP
                                                                                                                                                        ↳ UsableRulesProof
                                                                                                                                                          ↳ QDP
                                                                                                                                                            ↳ Rewriting
                                                                                                                                                              ↳ QDP
                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                  ↳ QDP
                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                      ↳ QDP
                                                                                                                                                                        ↳ UsableRulesProof
                                                                                                                                                                          ↳ QDP
                                                                                                                                                                            ↳ Rewriting
                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                ↳ UsableRulesProof
                                                                                                                                                                                  ↳ QDP
                                                                                                                                                                                    ↳ QReductionProof
                                                                                                                                                                                      ↳ QDP
                                                                                                                                                                                        ↳ Rewriting
                                                                                                                                                                                          ↳ QDP
                                                                                                                                                                                            ↳ Rewriting
                                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                                                  ↳ QDP
                                                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                                                      ↳ QDP
                                                                                                                                                                                                        ↳ Rewriting
                                                                                                                                                                                                          ↳ QDP
                                                                                                                                                                                                            ↳ Instantiation
                                                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                                                ↳ Instantiation
                                                                                                                                                                                                                  ↳ QDP
                                                                                                                                                                                                                    ↳ Rewriting
QDP
                                                                                                                                                                                                                        ↳ Instantiation

Q DP problem:
The TRS P consists of the following rules:

COND2(false, pos(s(s(z0)))) → F(pos(s(s(s(plus_nat(plus_nat(z0, s(s(z0))), s(s(z0))))))))
F(pos(s(s(s(y_1))))) → COND1(true, pos(s(s(s(y_1)))))
COND1(true, pos(s(s(s(z0))))) → COND2(equal_int(pos(if(greatereq_int(pos(z0), pos(s(0))), mod_nat(minus_nat_s(z0, s(0)), s(s(0))), s(z0))), pos(0)), pos(s(s(s(z0)))))

The TRS R consists of the following rules:

mod_nat(0, s(x)) → 0
mod_nat(s(x), s(y)) → if(greatereq_int(pos(x), pos(y)), mod_nat(minus_nat_s(x, y), s(y)), s(x))
equal_int(pos(0), pos(0)) → true
equal_int(pos(s(x)), pos(0)) → false
greatereq_int(pos(x), pos(0)) → true
greatereq_int(pos(0), pos(s(y))) → false
greatereq_int(pos(s(x)), pos(s(y))) → greatereq_int(pos(x), pos(y))
minus_nat_s(x, 0) → x
minus_nat_s(0, s(y)) → 0
minus_nat_s(s(x), s(y)) → minus_nat_s(x, y)
if(true, x, y) → x
if(false, x, y) → y
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))

The set Q consists of the following terms:

plus_nat(0, x0)
plus_nat(s(x0), x1)
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
if(true, x0, x1)
if(false, x0, x1)
minus_nat_s(x0, 0)
minus_nat_s(0, s(x0))
minus_nat_s(s(x0), s(x1))
equal_int(pos(0), pos(0))
equal_int(neg(0), pos(0))
equal_int(neg(0), neg(0))
equal_int(pos(0), neg(0))
equal_int(pos(0), pos(s(x0)))
equal_int(neg(0), pos(s(x0)))
equal_int(pos(0), neg(s(x0)))
equal_int(neg(0), neg(s(x0)))
equal_int(pos(s(x0)), pos(0))
equal_int(pos(s(x0)), neg(0))
equal_int(neg(s(x0)), pos(0))
equal_int(neg(s(x0)), neg(0))
equal_int(pos(s(x0)), neg(s(x1)))
equal_int(neg(s(x0)), pos(s(x1)))
equal_int(pos(s(x0)), pos(s(x1)))
equal_int(neg(s(x0)), neg(s(x1)))
mod_nat(0, s(x0))
mod_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
By instantiating [LPAR04] the rule COND2(false, pos(s(s(z0)))) → F(pos(s(s(s(plus_nat(plus_nat(z0, s(s(z0))), s(s(z0)))))))) we obtained the following new rules [LPAR04]:

COND2(false, pos(s(s(s(z0))))) → F(pos(s(s(s(plus_nat(plus_nat(s(z0), s(s(s(z0)))), s(s(s(z0)))))))))



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ QDPOrderProof
                          ↳ QDP
                            ↳ UsableRulesProof
                              ↳ QDP
                                ↳ QReductionProof
                                  ↳ QDP
                                    ↳ RemovalProof
                                    ↳ RemovalProof
                                    ↳ Narrowing
                                      ↳ QDP
                                        ↳ DependencyGraphProof
                                          ↳ QDP
                                            ↳ UsableRulesProof
                                              ↳ QDP
                                                ↳ Narrowing
                                                  ↳ QDP
                                                    ↳ UsableRulesProof
                                                      ↳ QDP
                                                        ↳ QReductionProof
                                                          ↳ QDP
                                                            ↳ Rewriting
                                                              ↳ QDP
                                                                ↳ UsableRulesProof
                                                                  ↳ QDP
                                                                    ↳ Rewriting
                                                                      ↳ QDP
                                                                        ↳ UsableRulesProof
                                                                          ↳ QDP
                                                                            ↳ QReductionProof
                                                                              ↳ QDP
                                                                                ↳ Rewriting
                                                                                  ↳ QDP
                                                                                    ↳ Rewriting
                                                                                      ↳ QDP
                                                                                        ↳ Narrowing
                                                                                          ↳ QDP
                                                                                            ↳ DependencyGraphProof
                                                                                              ↳ QDP
                                                                                                ↳ UsableRulesProof
                                                                                                  ↳ QDP
                                                                                                    ↳ QReductionProof
                                                                                                      ↳ QDP
                                                                                                        ↳ Narrowing
                                                                                                          ↳ QDP
                                                                                                            ↳ DependencyGraphProof
                                                                                                              ↳ QDP
                                                                                                                ↳ UsableRulesProof
                                                                                                                  ↳ QDP
                                                                                                                    ↳ QReductionProof
                                                                                                                      ↳ QDP
                                                                                                                        ↳ Instantiation
                                                                                                                          ↳ QDP
                                                                                                                            ↳ Rewriting
                                                                                                                              ↳ QDP
                                                                                                                                ↳ Rewriting
                                                                                                                                  ↳ QDP
                                                                                                                                    ↳ Rewriting
                                                                                                                                      ↳ QDP
                                                                                                                                        ↳ Rewriting
                                                                                                                                          ↳ QDP
                                                                                                                                            ↳ Rewriting
                                                                                                                                              ↳ QDP
                                                                                                                                                ↳ Rewriting
                                                                                                                                                  ↳ QDP
                                                                                                                                                    ↳ Instantiation
                                                                                                                                                      ↳ QDP
                                                                                                                                                        ↳ UsableRulesProof
                                                                                                                                                          ↳ QDP
                                                                                                                                                            ↳ Rewriting
                                                                                                                                                              ↳ QDP
                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                  ↳ QDP
                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                      ↳ QDP
                                                                                                                                                                        ↳ UsableRulesProof
                                                                                                                                                                          ↳ QDP
                                                                                                                                                                            ↳ Rewriting
                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                ↳ UsableRulesProof
                                                                                                                                                                                  ↳ QDP
                                                                                                                                                                                    ↳ QReductionProof
                                                                                                                                                                                      ↳ QDP
                                                                                                                                                                                        ↳ Rewriting
                                                                                                                                                                                          ↳ QDP
                                                                                                                                                                                            ↳ Rewriting
                                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                                                  ↳ QDP
                                                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                                                      ↳ QDP
                                                                                                                                                                                                        ↳ Rewriting
                                                                                                                                                                                                          ↳ QDP
                                                                                                                                                                                                            ↳ Instantiation
                                                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                                                ↳ Instantiation
                                                                                                                                                                                                                  ↳ QDP
                                                                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                                                                      ↳ QDP
                                                                                                                                                                                                                        ↳ Instantiation
QDP
                                                                                                                                                                                                                            ↳ Rewriting

Q DP problem:
The TRS P consists of the following rules:

F(pos(s(s(s(y_1))))) → COND1(true, pos(s(s(s(y_1)))))
COND1(true, pos(s(s(s(z0))))) → COND2(equal_int(pos(if(greatereq_int(pos(z0), pos(s(0))), mod_nat(minus_nat_s(z0, s(0)), s(s(0))), s(z0))), pos(0)), pos(s(s(s(z0)))))
COND2(false, pos(s(s(s(z0))))) → F(pos(s(s(s(plus_nat(plus_nat(s(z0), s(s(s(z0)))), s(s(s(z0)))))))))

The TRS R consists of the following rules:

mod_nat(0, s(x)) → 0
mod_nat(s(x), s(y)) → if(greatereq_int(pos(x), pos(y)), mod_nat(minus_nat_s(x, y), s(y)), s(x))
equal_int(pos(0), pos(0)) → true
equal_int(pos(s(x)), pos(0)) → false
greatereq_int(pos(x), pos(0)) → true
greatereq_int(pos(0), pos(s(y))) → false
greatereq_int(pos(s(x)), pos(s(y))) → greatereq_int(pos(x), pos(y))
minus_nat_s(x, 0) → x
minus_nat_s(0, s(y)) → 0
minus_nat_s(s(x), s(y)) → minus_nat_s(x, y)
if(true, x, y) → x
if(false, x, y) → y
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))

The set Q consists of the following terms:

plus_nat(0, x0)
plus_nat(s(x0), x1)
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
if(true, x0, x1)
if(false, x0, x1)
minus_nat_s(x0, 0)
minus_nat_s(0, s(x0))
minus_nat_s(s(x0), s(x1))
equal_int(pos(0), pos(0))
equal_int(neg(0), pos(0))
equal_int(neg(0), neg(0))
equal_int(pos(0), neg(0))
equal_int(pos(0), pos(s(x0)))
equal_int(neg(0), pos(s(x0)))
equal_int(pos(0), neg(s(x0)))
equal_int(neg(0), neg(s(x0)))
equal_int(pos(s(x0)), pos(0))
equal_int(pos(s(x0)), neg(0))
equal_int(neg(s(x0)), pos(0))
equal_int(neg(s(x0)), neg(0))
equal_int(pos(s(x0)), neg(s(x1)))
equal_int(neg(s(x0)), pos(s(x1)))
equal_int(pos(s(x0)), pos(s(x1)))
equal_int(neg(s(x0)), neg(s(x1)))
mod_nat(0, s(x0))
mod_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
By rewriting [LPAR04] the rule COND2(false, pos(s(s(s(z0))))) → F(pos(s(s(s(plus_nat(plus_nat(s(z0), s(s(s(z0)))), s(s(s(z0))))))))) at position [0,0,0,0,0,0] we obtained the following new rules [LPAR04]:

COND2(false, pos(s(s(s(z0))))) → F(pos(s(s(s(plus_nat(s(plus_nat(z0, s(s(s(z0))))), s(s(s(z0)))))))))



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ QDPOrderProof
                          ↳ QDP
                            ↳ UsableRulesProof
                              ↳ QDP
                                ↳ QReductionProof
                                  ↳ QDP
                                    ↳ RemovalProof
                                    ↳ RemovalProof
                                    ↳ Narrowing
                                      ↳ QDP
                                        ↳ DependencyGraphProof
                                          ↳ QDP
                                            ↳ UsableRulesProof
                                              ↳ QDP
                                                ↳ Narrowing
                                                  ↳ QDP
                                                    ↳ UsableRulesProof
                                                      ↳ QDP
                                                        ↳ QReductionProof
                                                          ↳ QDP
                                                            ↳ Rewriting
                                                              ↳ QDP
                                                                ↳ UsableRulesProof
                                                                  ↳ QDP
                                                                    ↳ Rewriting
                                                                      ↳ QDP
                                                                        ↳ UsableRulesProof
                                                                          ↳ QDP
                                                                            ↳ QReductionProof
                                                                              ↳ QDP
                                                                                ↳ Rewriting
                                                                                  ↳ QDP
                                                                                    ↳ Rewriting
                                                                                      ↳ QDP
                                                                                        ↳ Narrowing
                                                                                          ↳ QDP
                                                                                            ↳ DependencyGraphProof
                                                                                              ↳ QDP
                                                                                                ↳ UsableRulesProof
                                                                                                  ↳ QDP
                                                                                                    ↳ QReductionProof
                                                                                                      ↳ QDP
                                                                                                        ↳ Narrowing
                                                                                                          ↳ QDP
                                                                                                            ↳ DependencyGraphProof
                                                                                                              ↳ QDP
                                                                                                                ↳ UsableRulesProof
                                                                                                                  ↳ QDP
                                                                                                                    ↳ QReductionProof
                                                                                                                      ↳ QDP
                                                                                                                        ↳ Instantiation
                                                                                                                          ↳ QDP
                                                                                                                            ↳ Rewriting
                                                                                                                              ↳ QDP
                                                                                                                                ↳ Rewriting
                                                                                                                                  ↳ QDP
                                                                                                                                    ↳ Rewriting
                                                                                                                                      ↳ QDP
                                                                                                                                        ↳ Rewriting
                                                                                                                                          ↳ QDP
                                                                                                                                            ↳ Rewriting
                                                                                                                                              ↳ QDP
                                                                                                                                                ↳ Rewriting
                                                                                                                                                  ↳ QDP
                                                                                                                                                    ↳ Instantiation
                                                                                                                                                      ↳ QDP
                                                                                                                                                        ↳ UsableRulesProof
                                                                                                                                                          ↳ QDP
                                                                                                                                                            ↳ Rewriting
                                                                                                                                                              ↳ QDP
                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                  ↳ QDP
                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                      ↳ QDP
                                                                                                                                                                        ↳ UsableRulesProof
                                                                                                                                                                          ↳ QDP
                                                                                                                                                                            ↳ Rewriting
                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                ↳ UsableRulesProof
                                                                                                                                                                                  ↳ QDP
                                                                                                                                                                                    ↳ QReductionProof
                                                                                                                                                                                      ↳ QDP
                                                                                                                                                                                        ↳ Rewriting
                                                                                                                                                                                          ↳ QDP
                                                                                                                                                                                            ↳ Rewriting
                                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                                                  ↳ QDP
                                                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                                                      ↳ QDP
                                                                                                                                                                                                        ↳ Rewriting
                                                                                                                                                                                                          ↳ QDP
                                                                                                                                                                                                            ↳ Instantiation
                                                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                                                ↳ Instantiation
                                                                                                                                                                                                                  ↳ QDP
                                                                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                                                                      ↳ QDP
                                                                                                                                                                                                                        ↳ Instantiation
                                                                                                                                                                                                                          ↳ QDP
                                                                                                                                                                                                                            ↳ Rewriting
QDP
                                                                                                                                                                                                                                ↳ Rewriting

Q DP problem:
The TRS P consists of the following rules:

F(pos(s(s(s(y_1))))) → COND1(true, pos(s(s(s(y_1)))))
COND1(true, pos(s(s(s(z0))))) → COND2(equal_int(pos(if(greatereq_int(pos(z0), pos(s(0))), mod_nat(minus_nat_s(z0, s(0)), s(s(0))), s(z0))), pos(0)), pos(s(s(s(z0)))))
COND2(false, pos(s(s(s(z0))))) → F(pos(s(s(s(plus_nat(s(plus_nat(z0, s(s(s(z0))))), s(s(s(z0)))))))))

The TRS R consists of the following rules:

mod_nat(0, s(x)) → 0
mod_nat(s(x), s(y)) → if(greatereq_int(pos(x), pos(y)), mod_nat(minus_nat_s(x, y), s(y)), s(x))
equal_int(pos(0), pos(0)) → true
equal_int(pos(s(x)), pos(0)) → false
greatereq_int(pos(x), pos(0)) → true
greatereq_int(pos(0), pos(s(y))) → false
greatereq_int(pos(s(x)), pos(s(y))) → greatereq_int(pos(x), pos(y))
minus_nat_s(x, 0) → x
minus_nat_s(0, s(y)) → 0
minus_nat_s(s(x), s(y)) → minus_nat_s(x, y)
if(true, x, y) → x
if(false, x, y) → y
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))

The set Q consists of the following terms:

plus_nat(0, x0)
plus_nat(s(x0), x1)
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
if(true, x0, x1)
if(false, x0, x1)
minus_nat_s(x0, 0)
minus_nat_s(0, s(x0))
minus_nat_s(s(x0), s(x1))
equal_int(pos(0), pos(0))
equal_int(neg(0), pos(0))
equal_int(neg(0), neg(0))
equal_int(pos(0), neg(0))
equal_int(pos(0), pos(s(x0)))
equal_int(neg(0), pos(s(x0)))
equal_int(pos(0), neg(s(x0)))
equal_int(neg(0), neg(s(x0)))
equal_int(pos(s(x0)), pos(0))
equal_int(pos(s(x0)), neg(0))
equal_int(neg(s(x0)), pos(0))
equal_int(neg(s(x0)), neg(0))
equal_int(pos(s(x0)), neg(s(x1)))
equal_int(neg(s(x0)), pos(s(x1)))
equal_int(pos(s(x0)), pos(s(x1)))
equal_int(neg(s(x0)), neg(s(x1)))
mod_nat(0, s(x0))
mod_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
By rewriting [LPAR04] the rule COND2(false, pos(s(s(s(z0))))) → F(pos(s(s(s(plus_nat(s(plus_nat(z0, s(s(s(z0))))), s(s(s(z0))))))))) at position [0,0,0,0,0] we obtained the following new rules [LPAR04]:

COND2(false, pos(s(s(s(z0))))) → F(pos(s(s(s(s(plus_nat(plus_nat(z0, s(s(s(z0)))), s(s(s(z0))))))))))



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ QDPOrderProof
                          ↳ QDP
                            ↳ UsableRulesProof
                              ↳ QDP
                                ↳ QReductionProof
                                  ↳ QDP
                                    ↳ RemovalProof
                                    ↳ RemovalProof
                                    ↳ Narrowing
                                      ↳ QDP
                                        ↳ DependencyGraphProof
                                          ↳ QDP
                                            ↳ UsableRulesProof
                                              ↳ QDP
                                                ↳ Narrowing
                                                  ↳ QDP
                                                    ↳ UsableRulesProof
                                                      ↳ QDP
                                                        ↳ QReductionProof
                                                          ↳ QDP
                                                            ↳ Rewriting
                                                              ↳ QDP
                                                                ↳ UsableRulesProof
                                                                  ↳ QDP
                                                                    ↳ Rewriting
                                                                      ↳ QDP
                                                                        ↳ UsableRulesProof
                                                                          ↳ QDP
                                                                            ↳ QReductionProof
                                                                              ↳ QDP
                                                                                ↳ Rewriting
                                                                                  ↳ QDP
                                                                                    ↳ Rewriting
                                                                                      ↳ QDP
                                                                                        ↳ Narrowing
                                                                                          ↳ QDP
                                                                                            ↳ DependencyGraphProof
                                                                                              ↳ QDP
                                                                                                ↳ UsableRulesProof
                                                                                                  ↳ QDP
                                                                                                    ↳ QReductionProof
                                                                                                      ↳ QDP
                                                                                                        ↳ Narrowing
                                                                                                          ↳ QDP
                                                                                                            ↳ DependencyGraphProof
                                                                                                              ↳ QDP
                                                                                                                ↳ UsableRulesProof
                                                                                                                  ↳ QDP
                                                                                                                    ↳ QReductionProof
                                                                                                                      ↳ QDP
                                                                                                                        ↳ Instantiation
                                                                                                                          ↳ QDP
                                                                                                                            ↳ Rewriting
                                                                                                                              ↳ QDP
                                                                                                                                ↳ Rewriting
                                                                                                                                  ↳ QDP
                                                                                                                                    ↳ Rewriting
                                                                                                                                      ↳ QDP
                                                                                                                                        ↳ Rewriting
                                                                                                                                          ↳ QDP
                                                                                                                                            ↳ Rewriting
                                                                                                                                              ↳ QDP
                                                                                                                                                ↳ Rewriting
                                                                                                                                                  ↳ QDP
                                                                                                                                                    ↳ Instantiation
                                                                                                                                                      ↳ QDP
                                                                                                                                                        ↳ UsableRulesProof
                                                                                                                                                          ↳ QDP
                                                                                                                                                            ↳ Rewriting
                                                                                                                                                              ↳ QDP
                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                  ↳ QDP
                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                      ↳ QDP
                                                                                                                                                                        ↳ UsableRulesProof
                                                                                                                                                                          ↳ QDP
                                                                                                                                                                            ↳ Rewriting
                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                ↳ UsableRulesProof
                                                                                                                                                                                  ↳ QDP
                                                                                                                                                                                    ↳ QReductionProof
                                                                                                                                                                                      ↳ QDP
                                                                                                                                                                                        ↳ Rewriting
                                                                                                                                                                                          ↳ QDP
                                                                                                                                                                                            ↳ Rewriting
                                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                                                  ↳ QDP
                                                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                                                      ↳ QDP
                                                                                                                                                                                                        ↳ Rewriting
                                                                                                                                                                                                          ↳ QDP
                                                                                                                                                                                                            ↳ Instantiation
                                                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                                                ↳ Instantiation
                                                                                                                                                                                                                  ↳ QDP
                                                                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                                                                      ↳ QDP
                                                                                                                                                                                                                        ↳ Instantiation
                                                                                                                                                                                                                          ↳ QDP
                                                                                                                                                                                                                            ↳ Rewriting
                                                                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                                                                ↳ Rewriting
QDP
                                                                                                                                                                                                                                    ↳ Instantiation

Q DP problem:
The TRS P consists of the following rules:

F(pos(s(s(s(y_1))))) → COND1(true, pos(s(s(s(y_1)))))
COND1(true, pos(s(s(s(z0))))) → COND2(equal_int(pos(if(greatereq_int(pos(z0), pos(s(0))), mod_nat(minus_nat_s(z0, s(0)), s(s(0))), s(z0))), pos(0)), pos(s(s(s(z0)))))
COND2(false, pos(s(s(s(z0))))) → F(pos(s(s(s(s(plus_nat(plus_nat(z0, s(s(s(z0)))), s(s(s(z0))))))))))

The TRS R consists of the following rules:

mod_nat(0, s(x)) → 0
mod_nat(s(x), s(y)) → if(greatereq_int(pos(x), pos(y)), mod_nat(minus_nat_s(x, y), s(y)), s(x))
equal_int(pos(0), pos(0)) → true
equal_int(pos(s(x)), pos(0)) → false
greatereq_int(pos(x), pos(0)) → true
greatereq_int(pos(0), pos(s(y))) → false
greatereq_int(pos(s(x)), pos(s(y))) → greatereq_int(pos(x), pos(y))
minus_nat_s(x, 0) → x
minus_nat_s(0, s(y)) → 0
minus_nat_s(s(x), s(y)) → minus_nat_s(x, y)
if(true, x, y) → x
if(false, x, y) → y
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))

The set Q consists of the following terms:

plus_nat(0, x0)
plus_nat(s(x0), x1)
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
if(true, x0, x1)
if(false, x0, x1)
minus_nat_s(x0, 0)
minus_nat_s(0, s(x0))
minus_nat_s(s(x0), s(x1))
equal_int(pos(0), pos(0))
equal_int(neg(0), pos(0))
equal_int(neg(0), neg(0))
equal_int(pos(0), neg(0))
equal_int(pos(0), pos(s(x0)))
equal_int(neg(0), pos(s(x0)))
equal_int(pos(0), neg(s(x0)))
equal_int(neg(0), neg(s(x0)))
equal_int(pos(s(x0)), pos(0))
equal_int(pos(s(x0)), neg(0))
equal_int(neg(s(x0)), pos(0))
equal_int(neg(s(x0)), neg(0))
equal_int(pos(s(x0)), neg(s(x1)))
equal_int(neg(s(x0)), pos(s(x1)))
equal_int(pos(s(x0)), pos(s(x1)))
equal_int(neg(s(x0)), neg(s(x1)))
mod_nat(0, s(x0))
mod_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
By instantiating [LPAR04] the rule F(pos(s(s(s(y_1))))) → COND1(true, pos(s(s(s(y_1))))) we obtained the following new rules [LPAR04]:

F(pos(s(s(s(s(y_1)))))) → COND1(true, pos(s(s(s(s(y_1))))))



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ QDPOrderProof
                          ↳ QDP
                            ↳ UsableRulesProof
                              ↳ QDP
                                ↳ QReductionProof
                                  ↳ QDP
                                    ↳ RemovalProof
                                    ↳ RemovalProof
                                    ↳ Narrowing
                                      ↳ QDP
                                        ↳ DependencyGraphProof
                                          ↳ QDP
                                            ↳ UsableRulesProof
                                              ↳ QDP
                                                ↳ Narrowing
                                                  ↳ QDP
                                                    ↳ UsableRulesProof
                                                      ↳ QDP
                                                        ↳ QReductionProof
                                                          ↳ QDP
                                                            ↳ Rewriting
                                                              ↳ QDP
                                                                ↳ UsableRulesProof
                                                                  ↳ QDP
                                                                    ↳ Rewriting
                                                                      ↳ QDP
                                                                        ↳ UsableRulesProof
                                                                          ↳ QDP
                                                                            ↳ QReductionProof
                                                                              ↳ QDP
                                                                                ↳ Rewriting
                                                                                  ↳ QDP
                                                                                    ↳ Rewriting
                                                                                      ↳ QDP
                                                                                        ↳ Narrowing
                                                                                          ↳ QDP
                                                                                            ↳ DependencyGraphProof
                                                                                              ↳ QDP
                                                                                                ↳ UsableRulesProof
                                                                                                  ↳ QDP
                                                                                                    ↳ QReductionProof
                                                                                                      ↳ QDP
                                                                                                        ↳ Narrowing
                                                                                                          ↳ QDP
                                                                                                            ↳ DependencyGraphProof
                                                                                                              ↳ QDP
                                                                                                                ↳ UsableRulesProof
                                                                                                                  ↳ QDP
                                                                                                                    ↳ QReductionProof
                                                                                                                      ↳ QDP
                                                                                                                        ↳ Instantiation
                                                                                                                          ↳ QDP
                                                                                                                            ↳ Rewriting
                                                                                                                              ↳ QDP
                                                                                                                                ↳ Rewriting
                                                                                                                                  ↳ QDP
                                                                                                                                    ↳ Rewriting
                                                                                                                                      ↳ QDP
                                                                                                                                        ↳ Rewriting
                                                                                                                                          ↳ QDP
                                                                                                                                            ↳ Rewriting
                                                                                                                                              ↳ QDP
                                                                                                                                                ↳ Rewriting
                                                                                                                                                  ↳ QDP
                                                                                                                                                    ↳ Instantiation
                                                                                                                                                      ↳ QDP
                                                                                                                                                        ↳ UsableRulesProof
                                                                                                                                                          ↳ QDP
                                                                                                                                                            ↳ Rewriting
                                                                                                                                                              ↳ QDP
                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                  ↳ QDP
                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                      ↳ QDP
                                                                                                                                                                        ↳ UsableRulesProof
                                                                                                                                                                          ↳ QDP
                                                                                                                                                                            ↳ Rewriting
                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                ↳ UsableRulesProof
                                                                                                                                                                                  ↳ QDP
                                                                                                                                                                                    ↳ QReductionProof
                                                                                                                                                                                      ↳ QDP
                                                                                                                                                                                        ↳ Rewriting
                                                                                                                                                                                          ↳ QDP
                                                                                                                                                                                            ↳ Rewriting
                                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                                                  ↳ QDP
                                                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                                                      ↳ QDP
                                                                                                                                                                                                        ↳ Rewriting
                                                                                                                                                                                                          ↳ QDP
                                                                                                                                                                                                            ↳ Instantiation
                                                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                                                ↳ Instantiation
                                                                                                                                                                                                                  ↳ QDP
                                                                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                                                                      ↳ QDP
                                                                                                                                                                                                                        ↳ Instantiation
                                                                                                                                                                                                                          ↳ QDP
                                                                                                                                                                                                                            ↳ Rewriting
                                                                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                                                                                  ↳ QDP
                                                                                                                                                                                                                                    ↳ Instantiation
QDP
                                                                                                                                                                                                                                        ↳ RemovalProof
                                                                                                                                                                                                                                        ↳ RemovalProof
                                                                                                                                                                                                                                        ↳ QReductionProof

Q DP problem:
The TRS P consists of the following rules:

COND1(true, pos(s(s(s(z0))))) → COND2(equal_int(pos(if(greatereq_int(pos(z0), pos(s(0))), mod_nat(minus_nat_s(z0, s(0)), s(s(0))), s(z0))), pos(0)), pos(s(s(s(z0)))))
COND2(false, pos(s(s(s(z0))))) → F(pos(s(s(s(s(plus_nat(plus_nat(z0, s(s(s(z0)))), s(s(s(z0))))))))))
F(pos(s(s(s(s(y_1)))))) → COND1(true, pos(s(s(s(s(y_1))))))

The TRS R consists of the following rules:

mod_nat(0, s(x)) → 0
mod_nat(s(x), s(y)) → if(greatereq_int(pos(x), pos(y)), mod_nat(minus_nat_s(x, y), s(y)), s(x))
equal_int(pos(0), pos(0)) → true
equal_int(pos(s(x)), pos(0)) → false
greatereq_int(pos(x), pos(0)) → true
greatereq_int(pos(0), pos(s(y))) → false
greatereq_int(pos(s(x)), pos(s(y))) → greatereq_int(pos(x), pos(y))
minus_nat_s(x, 0) → x
minus_nat_s(0, s(y)) → 0
minus_nat_s(s(x), s(y)) → minus_nat_s(x, y)
if(true, x, y) → x
if(false, x, y) → y
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))

The set Q consists of the following terms:

plus_nat(0, x0)
plus_nat(s(x0), x1)
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
if(true, x0, x1)
if(false, x0, x1)
minus_nat_s(x0, 0)
minus_nat_s(0, s(x0))
minus_nat_s(s(x0), s(x1))
equal_int(pos(0), pos(0))
equal_int(neg(0), pos(0))
equal_int(neg(0), neg(0))
equal_int(pos(0), neg(0))
equal_int(pos(0), pos(s(x0)))
equal_int(neg(0), pos(s(x0)))
equal_int(pos(0), neg(s(x0)))
equal_int(neg(0), neg(s(x0)))
equal_int(pos(s(x0)), pos(0))
equal_int(pos(s(x0)), neg(0))
equal_int(neg(s(x0)), pos(0))
equal_int(neg(s(x0)), neg(0))
equal_int(pos(s(x0)), neg(s(x1)))
equal_int(neg(s(x0)), pos(s(x1)))
equal_int(pos(s(x0)), pos(s(x1)))
equal_int(neg(s(x0)), neg(s(x1)))
mod_nat(0, s(x0))
mod_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
In the following pairs the term without variables pos(s(0)) is replaced by the fresh variable x_removed.
Pair: COND1(true, pos(s(s(s(z0))))) → COND2(equal_int(pos(if(greatereq_int(pos(z0), pos(s(0))), mod_nat(minus_nat_s(z0, s(0)), s(s(0))), s(z0))), pos(0)), pos(s(s(s(z0)))))
Positions in right side of the pair: The new variable was added to all pairs as a new argument[CONREM].

↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ QDPOrderProof
                          ↳ QDP
                            ↳ UsableRulesProof
                              ↳ QDP
                                ↳ QReductionProof
                                  ↳ QDP
                                    ↳ RemovalProof
                                    ↳ RemovalProof
                                    ↳ Narrowing
                                      ↳ QDP
                                        ↳ DependencyGraphProof
                                          ↳ QDP
                                            ↳ UsableRulesProof
                                              ↳ QDP
                                                ↳ Narrowing
                                                  ↳ QDP
                                                    ↳ UsableRulesProof
                                                      ↳ QDP
                                                        ↳ QReductionProof
                                                          ↳ QDP
                                                            ↳ Rewriting
                                                              ↳ QDP
                                                                ↳ UsableRulesProof
                                                                  ↳ QDP
                                                                    ↳ Rewriting
                                                                      ↳ QDP
                                                                        ↳ UsableRulesProof
                                                                          ↳ QDP
                                                                            ↳ QReductionProof
                                                                              ↳ QDP
                                                                                ↳ Rewriting
                                                                                  ↳ QDP
                                                                                    ↳ Rewriting
                                                                                      ↳ QDP
                                                                                        ↳ Narrowing
                                                                                          ↳ QDP
                                                                                            ↳ DependencyGraphProof
                                                                                              ↳ QDP
                                                                                                ↳ UsableRulesProof
                                                                                                  ↳ QDP
                                                                                                    ↳ QReductionProof
                                                                                                      ↳ QDP
                                                                                                        ↳ Narrowing
                                                                                                          ↳ QDP
                                                                                                            ↳ DependencyGraphProof
                                                                                                              ↳ QDP
                                                                                                                ↳ UsableRulesProof
                                                                                                                  ↳ QDP
                                                                                                                    ↳ QReductionProof
                                                                                                                      ↳ QDP
                                                                                                                        ↳ Instantiation
                                                                                                                          ↳ QDP
                                                                                                                            ↳ Rewriting
                                                                                                                              ↳ QDP
                                                                                                                                ↳ Rewriting
                                                                                                                                  ↳ QDP
                                                                                                                                    ↳ Rewriting
                                                                                                                                      ↳ QDP
                                                                                                                                        ↳ Rewriting
                                                                                                                                          ↳ QDP
                                                                                                                                            ↳ Rewriting
                                                                                                                                              ↳ QDP
                                                                                                                                                ↳ Rewriting
                                                                                                                                                  ↳ QDP
                                                                                                                                                    ↳ Instantiation
                                                                                                                                                      ↳ QDP
                                                                                                                                                        ↳ UsableRulesProof
                                                                                                                                                          ↳ QDP
                                                                                                                                                            ↳ Rewriting
                                                                                                                                                              ↳ QDP
                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                  ↳ QDP
                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                      ↳ QDP
                                                                                                                                                                        ↳ UsableRulesProof
                                                                                                                                                                          ↳ QDP
                                                                                                                                                                            ↳ Rewriting
                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                ↳ UsableRulesProof
                                                                                                                                                                                  ↳ QDP
                                                                                                                                                                                    ↳ QReductionProof
                                                                                                                                                                                      ↳ QDP
                                                                                                                                                                                        ↳ Rewriting
                                                                                                                                                                                          ↳ QDP
                                                                                                                                                                                            ↳ Rewriting
                                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                                                  ↳ QDP
                                                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                                                      ↳ QDP
                                                                                                                                                                                                        ↳ Rewriting
                                                                                                                                                                                                          ↳ QDP
                                                                                                                                                                                                            ↳ Instantiation
                                                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                                                ↳ Instantiation
                                                                                                                                                                                                                  ↳ QDP
                                                                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                                                                      ↳ QDP
                                                                                                                                                                                                                        ↳ Instantiation
                                                                                                                                                                                                                          ↳ QDP
                                                                                                                                                                                                                            ↳ Rewriting
                                                                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                                                                                  ↳ QDP
                                                                                                                                                                                                                                    ↳ Instantiation
                                                                                                                                                                                                                                      ↳ QDP
                                                                                                                                                                                                                                        ↳ RemovalProof
QDP
                                                                                                                                                                                                                                        ↳ RemovalProof
                                                                                                                                                                                                                                        ↳ QReductionProof

Q DP problem:
The TRS P consists of the following rules:

COND1(true, pos(s(s(s(z0)))), x_removed) → COND2(equal_int(pos(if(greatereq_int(pos(z0), x_removed), mod_nat(minus_nat_s(z0, s(0)), s(s(0))), s(z0))), pos(0)), pos(s(s(s(z0)))), x_removed)
COND2(false, pos(s(s(s(z0)))), x_removed) → F(pos(s(s(s(s(plus_nat(plus_nat(z0, s(s(s(z0)))), s(s(s(z0))))))))), x_removed)
F(pos(s(s(s(s(y_1))))), x_removed) → COND1(true, pos(s(s(s(s(y_1))))), x_removed)

The TRS R consists of the following rules:

mod_nat(0, s(x)) → 0
mod_nat(s(x), s(y)) → if(greatereq_int(pos(x), pos(y)), mod_nat(minus_nat_s(x, y), s(y)), s(x))
equal_int(pos(0), pos(0)) → true
equal_int(pos(s(x)), pos(0)) → false
greatereq_int(pos(x), pos(0)) → true
greatereq_int(pos(0), pos(s(y))) → false
greatereq_int(pos(s(x)), pos(s(y))) → greatereq_int(pos(x), pos(y))
minus_nat_s(x, 0) → x
minus_nat_s(0, s(y)) → 0
minus_nat_s(s(x), s(y)) → minus_nat_s(x, y)
if(true, x, y) → x
if(false, x, y) → y
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))

The set Q consists of the following terms:

plus_nat(0, x0)
plus_nat(s(x0), x1)
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
if(true, x0, x1)
if(false, x0, x1)
minus_nat_s(x0, 0)
minus_nat_s(0, s(x0))
minus_nat_s(s(x0), s(x1))
equal_int(pos(0), pos(0))
equal_int(neg(0), pos(0))
equal_int(neg(0), neg(0))
equal_int(pos(0), neg(0))
equal_int(pos(0), pos(s(x0)))
equal_int(neg(0), pos(s(x0)))
equal_int(pos(0), neg(s(x0)))
equal_int(neg(0), neg(s(x0)))
equal_int(pos(s(x0)), pos(0))
equal_int(pos(s(x0)), neg(0))
equal_int(neg(s(x0)), pos(0))
equal_int(neg(s(x0)), neg(0))
equal_int(pos(s(x0)), neg(s(x1)))
equal_int(neg(s(x0)), pos(s(x1)))
equal_int(pos(s(x0)), pos(s(x1)))
equal_int(neg(s(x0)), neg(s(x1)))
mod_nat(0, s(x0))
mod_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
In the following pairs the term without variables pos(s(0)) is replaced by the fresh variable x_removed.
Pair: COND1(true, pos(s(s(s(z0))))) → COND2(equal_int(pos(if(greatereq_int(pos(z0), pos(s(0))), mod_nat(minus_nat_s(z0, s(0)), s(s(0))), s(z0))), pos(0)), pos(s(s(s(z0)))))
Positions in right side of the pair: The new variable was added to all pairs as a new argument[CONREM].

↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ QDPOrderProof
                          ↳ QDP
                            ↳ UsableRulesProof
                              ↳ QDP
                                ↳ QReductionProof
                                  ↳ QDP
                                    ↳ RemovalProof
                                    ↳ RemovalProof
                                    ↳ Narrowing
                                      ↳ QDP
                                        ↳ DependencyGraphProof
                                          ↳ QDP
                                            ↳ UsableRulesProof
                                              ↳ QDP
                                                ↳ Narrowing
                                                  ↳ QDP
                                                    ↳ UsableRulesProof
                                                      ↳ QDP
                                                        ↳ QReductionProof
                                                          ↳ QDP
                                                            ↳ Rewriting
                                                              ↳ QDP
                                                                ↳ UsableRulesProof
                                                                  ↳ QDP
                                                                    ↳ Rewriting
                                                                      ↳ QDP
                                                                        ↳ UsableRulesProof
                                                                          ↳ QDP
                                                                            ↳ QReductionProof
                                                                              ↳ QDP
                                                                                ↳ Rewriting
                                                                                  ↳ QDP
                                                                                    ↳ Rewriting
                                                                                      ↳ QDP
                                                                                        ↳ Narrowing
                                                                                          ↳ QDP
                                                                                            ↳ DependencyGraphProof
                                                                                              ↳ QDP
                                                                                                ↳ UsableRulesProof
                                                                                                  ↳ QDP
                                                                                                    ↳ QReductionProof
                                                                                                      ↳ QDP
                                                                                                        ↳ Narrowing
                                                                                                          ↳ QDP
                                                                                                            ↳ DependencyGraphProof
                                                                                                              ↳ QDP
                                                                                                                ↳ UsableRulesProof
                                                                                                                  ↳ QDP
                                                                                                                    ↳ QReductionProof
                                                                                                                      ↳ QDP
                                                                                                                        ↳ Instantiation
                                                                                                                          ↳ QDP
                                                                                                                            ↳ Rewriting
                                                                                                                              ↳ QDP
                                                                                                                                ↳ Rewriting
                                                                                                                                  ↳ QDP
                                                                                                                                    ↳ Rewriting
                                                                                                                                      ↳ QDP
                                                                                                                                        ↳ Rewriting
                                                                                                                                          ↳ QDP
                                                                                                                                            ↳ Rewriting
                                                                                                                                              ↳ QDP
                                                                                                                                                ↳ Rewriting
                                                                                                                                                  ↳ QDP
                                                                                                                                                    ↳ Instantiation
                                                                                                                                                      ↳ QDP
                                                                                                                                                        ↳ UsableRulesProof
                                                                                                                                                          ↳ QDP
                                                                                                                                                            ↳ Rewriting
                                                                                                                                                              ↳ QDP
                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                  ↳ QDP
                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                      ↳ QDP
                                                                                                                                                                        ↳ UsableRulesProof
                                                                                                                                                                          ↳ QDP
                                                                                                                                                                            ↳ Rewriting
                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                ↳ UsableRulesProof
                                                                                                                                                                                  ↳ QDP
                                                                                                                                                                                    ↳ QReductionProof
                                                                                                                                                                                      ↳ QDP
                                                                                                                                                                                        ↳ Rewriting
                                                                                                                                                                                          ↳ QDP
                                                                                                                                                                                            ↳ Rewriting
                                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                                                  ↳ QDP
                                                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                                                      ↳ QDP
                                                                                                                                                                                                        ↳ Rewriting
                                                                                                                                                                                                          ↳ QDP
                                                                                                                                                                                                            ↳ Instantiation
                                                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                                                ↳ Instantiation
                                                                                                                                                                                                                  ↳ QDP
                                                                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                                                                      ↳ QDP
                                                                                                                                                                                                                        ↳ Instantiation
                                                                                                                                                                                                                          ↳ QDP
                                                                                                                                                                                                                            ↳ Rewriting
                                                                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                                                                                  ↳ QDP
                                                                                                                                                                                                                                    ↳ Instantiation
                                                                                                                                                                                                                                      ↳ QDP
                                                                                                                                                                                                                                        ↳ RemovalProof
                                                                                                                                                                                                                                        ↳ RemovalProof
QDP
                                                                                                                                                                                                                                        ↳ QReductionProof

Q DP problem:
The TRS P consists of the following rules:

COND1(true, pos(s(s(s(z0)))), x_removed) → COND2(equal_int(pos(if(greatereq_int(pos(z0), x_removed), mod_nat(minus_nat_s(z0, s(0)), s(s(0))), s(z0))), pos(0)), pos(s(s(s(z0)))), x_removed)
COND2(false, pos(s(s(s(z0)))), x_removed) → F(pos(s(s(s(s(plus_nat(plus_nat(z0, s(s(s(z0)))), s(s(s(z0))))))))), x_removed)
F(pos(s(s(s(s(y_1))))), x_removed) → COND1(true, pos(s(s(s(s(y_1))))), x_removed)

The TRS R consists of the following rules:

mod_nat(0, s(x)) → 0
mod_nat(s(x), s(y)) → if(greatereq_int(pos(x), pos(y)), mod_nat(minus_nat_s(x, y), s(y)), s(x))
equal_int(pos(0), pos(0)) → true
equal_int(pos(s(x)), pos(0)) → false
greatereq_int(pos(x), pos(0)) → true
greatereq_int(pos(0), pos(s(y))) → false
greatereq_int(pos(s(x)), pos(s(y))) → greatereq_int(pos(x), pos(y))
minus_nat_s(x, 0) → x
minus_nat_s(0, s(y)) → 0
minus_nat_s(s(x), s(y)) → minus_nat_s(x, y)
if(true, x, y) → x
if(false, x, y) → y
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))

The set Q consists of the following terms:

plus_nat(0, x0)
plus_nat(s(x0), x1)
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
if(true, x0, x1)
if(false, x0, x1)
minus_nat_s(x0, 0)
minus_nat_s(0, s(x0))
minus_nat_s(s(x0), s(x1))
equal_int(pos(0), pos(0))
equal_int(neg(0), pos(0))
equal_int(neg(0), neg(0))
equal_int(pos(0), neg(0))
equal_int(pos(0), pos(s(x0)))
equal_int(neg(0), pos(s(x0)))
equal_int(pos(0), neg(s(x0)))
equal_int(neg(0), neg(s(x0)))
equal_int(pos(s(x0)), pos(0))
equal_int(pos(s(x0)), neg(0))
equal_int(neg(s(x0)), pos(0))
equal_int(neg(s(x0)), neg(0))
equal_int(pos(s(x0)), neg(s(x1)))
equal_int(neg(s(x0)), pos(s(x1)))
equal_int(pos(s(x0)), pos(s(x1)))
equal_int(neg(s(x0)), neg(s(x1)))
mod_nat(0, s(x0))
mod_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as they contain symbols which do neither occur in P nor in R.[THIEMANN].

greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(neg(s(x0)), neg(s(x1)))
equal_int(neg(0), pos(0))
equal_int(neg(0), neg(0))
equal_int(pos(0), neg(0))
equal_int(neg(0), pos(s(x0)))
equal_int(pos(0), neg(s(x0)))
equal_int(neg(0), neg(s(x0)))
equal_int(pos(s(x0)), neg(0))
equal_int(neg(s(x0)), pos(0))
equal_int(neg(s(x0)), neg(0))
equal_int(pos(s(x0)), neg(s(x1)))
equal_int(neg(s(x0)), pos(s(x1)))
equal_int(neg(s(x0)), neg(s(x1)))



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ QDPOrderProof
                          ↳ QDP
                            ↳ UsableRulesProof
                              ↳ QDP
                                ↳ QReductionProof
                                  ↳ QDP
                                    ↳ RemovalProof
                                    ↳ RemovalProof
                                    ↳ Narrowing
                                      ↳ QDP
                                        ↳ DependencyGraphProof
                                          ↳ QDP
                                            ↳ UsableRulesProof
                                              ↳ QDP
                                                ↳ Narrowing
                                                  ↳ QDP
                                                    ↳ UsableRulesProof
                                                      ↳ QDP
                                                        ↳ QReductionProof
                                                          ↳ QDP
                                                            ↳ Rewriting
                                                              ↳ QDP
                                                                ↳ UsableRulesProof
                                                                  ↳ QDP
                                                                    ↳ Rewriting
                                                                      ↳ QDP
                                                                        ↳ UsableRulesProof
                                                                          ↳ QDP
                                                                            ↳ QReductionProof
                                                                              ↳ QDP
                                                                                ↳ Rewriting
                                                                                  ↳ QDP
                                                                                    ↳ Rewriting
                                                                                      ↳ QDP
                                                                                        ↳ Narrowing
                                                                                          ↳ QDP
                                                                                            ↳ DependencyGraphProof
                                                                                              ↳ QDP
                                                                                                ↳ UsableRulesProof
                                                                                                  ↳ QDP
                                                                                                    ↳ QReductionProof
                                                                                                      ↳ QDP
                                                                                                        ↳ Narrowing
                                                                                                          ↳ QDP
                                                                                                            ↳ DependencyGraphProof
                                                                                                              ↳ QDP
                                                                                                                ↳ UsableRulesProof
                                                                                                                  ↳ QDP
                                                                                                                    ↳ QReductionProof
                                                                                                                      ↳ QDP
                                                                                                                        ↳ Instantiation
                                                                                                                          ↳ QDP
                                                                                                                            ↳ Rewriting
                                                                                                                              ↳ QDP
                                                                                                                                ↳ Rewriting
                                                                                                                                  ↳ QDP
                                                                                                                                    ↳ Rewriting
                                                                                                                                      ↳ QDP
                                                                                                                                        ↳ Rewriting
                                                                                                                                          ↳ QDP
                                                                                                                                            ↳ Rewriting
                                                                                                                                              ↳ QDP
                                                                                                                                                ↳ Rewriting
                                                                                                                                                  ↳ QDP
                                                                                                                                                    ↳ Instantiation
                                                                                                                                                      ↳ QDP
                                                                                                                                                        ↳ UsableRulesProof
                                                                                                                                                          ↳ QDP
                                                                                                                                                            ↳ Rewriting
                                                                                                                                                              ↳ QDP
                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                  ↳ QDP
                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                      ↳ QDP
                                                                                                                                                                        ↳ UsableRulesProof
                                                                                                                                                                          ↳ QDP
                                                                                                                                                                            ↳ Rewriting
                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                ↳ UsableRulesProof
                                                                                                                                                                                  ↳ QDP
                                                                                                                                                                                    ↳ QReductionProof
                                                                                                                                                                                      ↳ QDP
                                                                                                                                                                                        ↳ Rewriting
                                                                                                                                                                                          ↳ QDP
                                                                                                                                                                                            ↳ Rewriting
                                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                                                  ↳ QDP
                                                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                                                      ↳ QDP
                                                                                                                                                                                                        ↳ Rewriting
                                                                                                                                                                                                          ↳ QDP
                                                                                                                                                                                                            ↳ Instantiation
                                                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                                                ↳ Instantiation
                                                                                                                                                                                                                  ↳ QDP
                                                                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                                                                      ↳ QDP
                                                                                                                                                                                                                        ↳ Instantiation
                                                                                                                                                                                                                          ↳ QDP
                                                                                                                                                                                                                            ↳ Rewriting
                                                                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                                                                                  ↳ QDP
                                                                                                                                                                                                                                    ↳ Instantiation
                                                                                                                                                                                                                                      ↳ QDP
                                                                                                                                                                                                                                        ↳ RemovalProof
                                                                                                                                                                                                                                        ↳ RemovalProof
                                                                                                                                                                                                                                        ↳ QReductionProof
QDP

Q DP problem:
The TRS P consists of the following rules:

COND1(true, pos(s(s(s(z0))))) → COND2(equal_int(pos(if(greatereq_int(pos(z0), pos(s(0))), mod_nat(minus_nat_s(z0, s(0)), s(s(0))), s(z0))), pos(0)), pos(s(s(s(z0)))))
COND2(false, pos(s(s(s(z0))))) → F(pos(s(s(s(s(plus_nat(plus_nat(z0, s(s(s(z0)))), s(s(s(z0))))))))))
F(pos(s(s(s(s(y_1)))))) → COND1(true, pos(s(s(s(s(y_1))))))

The TRS R consists of the following rules:

mod_nat(0, s(x)) → 0
mod_nat(s(x), s(y)) → if(greatereq_int(pos(x), pos(y)), mod_nat(minus_nat_s(x, y), s(y)), s(x))
equal_int(pos(0), pos(0)) → true
equal_int(pos(s(x)), pos(0)) → false
greatereq_int(pos(x), pos(0)) → true
greatereq_int(pos(0), pos(s(y))) → false
greatereq_int(pos(s(x)), pos(s(y))) → greatereq_int(pos(x), pos(y))
minus_nat_s(x, 0) → x
minus_nat_s(0, s(y)) → 0
minus_nat_s(s(x), s(y)) → minus_nat_s(x, y)
if(true, x, y) → x
if(false, x, y) → y
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))

The set Q consists of the following terms:

plus_nat(0, x0)
plus_nat(s(x0), x1)
greatereq_int(pos(x0), pos(0))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(pos(s(x0)), pos(s(x1)))
if(true, x0, x1)
if(false, x0, x1)
minus_nat_s(x0, 0)
minus_nat_s(0, s(x0))
minus_nat_s(s(x0), s(x1))
equal_int(pos(0), pos(0))
equal_int(pos(0), pos(s(x0)))
equal_int(pos(s(x0)), pos(0))
equal_int(pos(s(x0)), pos(s(x1)))
mod_nat(0, s(x0))
mod_nat(s(x0), s(x1))

We have to consider all (P,Q,R)-chains.